Cargando…
Classification of Breast Cancer Images by Implementing Improved DCNN with Artificial Fish School Model
Breast cancer is an important factor affecting human health. This issue has various diagnosis process which were evolved such as mammography, fine needle aspirate, and surgical biopsy. These techniques use pathological breast cancer images for diagnosis. Breast cancer surgery allows the forensic doc...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8888076/ https://www.ncbi.nlm.nih.gov/pubmed/35242181 http://dx.doi.org/10.1155/2022/6785707 |
Sumario: | Breast cancer is an important factor affecting human health. This issue has various diagnosis process which were evolved such as mammography, fine needle aspirate, and surgical biopsy. These techniques use pathological breast cancer images for diagnosis. Breast cancer surgery allows the forensic doctor to histologist to access the microscopic level of breast tissues. The conventional method uses an optimized radial basis neural network using a cuckoo search algorithm. Existing radial basis neural network techniques utilized feature extraction and reduction parts separately. It is proposed that it overcomes the CNN approach for all the feature extraction and classification process to reduce time complexity. In this proposed method, a convolutional neural network is proposed based on an artificial fish school algorithm. The breast cancer image dataset is taken from cancer imaging archives. In the preprocessing step of classification, the breast cancer image is filtered with the support of a wiener filter for classification. The convolutional neural network has set the intense data of an image and is used to remove the features. After executing the extraction procedure, the reduction process is performed to speed up the train and test data processing. Here, the artificial fish school optimization algorithm is utilized to give the direct training data to the deep convolutional neural network. The extraction, reduction, and classification of features are utilized in the single deep convolutional neural network process. In this process, the optimization technique helps to decrease the error rate and increases the performance efficiency by finding the number of epochs and training images to the Deep CNN. In this system, the normal, benign, and malignant tissues are predicted. By comparing the existing RBF technique with the cuckoo search algorithm, the presented model attains the outcome in the way of sensitivity, accuracy, specificity, F1 score, and recall. |
---|