Cargando…

Can fractal dimensions objectivize gastropod shell morphometrics? A case study from Lake Lugu (SW China)

1. Morphometrics are fundamental for the analysis of size and shape in fossils, particularly because soft parts or DNA are rarely preserved and hard parts such as shells are commonly the only source of information. Geometric morphometrics, that is, landmark analysis, is well established for the desc...

Descripción completa

Detalles Bibliográficos
Autores principales: Wiese, Robert, Harrington, Kyle, Hartmann, Kai, Hethke, Manja, von Rintelen, Thomas, Zhang, Hucai, Zhang, Le‐Jia, Riedel, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8888252/
https://www.ncbi.nlm.nih.gov/pubmed/35261738
http://dx.doi.org/10.1002/ece3.8622
_version_ 1784661100576374784
author Wiese, Robert
Harrington, Kyle
Hartmann, Kai
Hethke, Manja
von Rintelen, Thomas
Zhang, Hucai
Zhang, Le‐Jia
Riedel, Frank
author_facet Wiese, Robert
Harrington, Kyle
Hartmann, Kai
Hethke, Manja
von Rintelen, Thomas
Zhang, Hucai
Zhang, Le‐Jia
Riedel, Frank
author_sort Wiese, Robert
collection PubMed
description 1. Morphometrics are fundamental for the analysis of size and shape in fossils, particularly because soft parts or DNA are rarely preserved and hard parts such as shells are commonly the only source of information. Geometric morphometrics, that is, landmark analysis, is well established for the description of shape but it exhibits a couple of shortcomings resulting from subjective choices during landmarking (number and position of landmarks) and from difficulties in resolving shape at the level of micro‐sculpture. 2. With the aid of high‐resolution 3D scanning technology and analyses of fractal dimensions, we test whether such shortcomings of linear and landmark morphometrics can be overcome. As a model group, we selected a clade of modern viviparid gastropods from Lake Lugu, with shells that show a high degree of sculptural variation. Linear and landmark analyses were applied to the same shells in order to establish the fractal dimensions. The genetic diversity of the gastropod clade was assessed. 3. The genetic results suggest that the gastropod clade represents a single species. The results of all morphometric methods applied are in line with the genetic results, which is that no specific morphotype could be delimited. Apart from this overall agreement, landmark and fractal dimension analyses do not correspond to each other but represent data sets with different information. Generally, the fractal dimension values quantify the roughness of the shell surface, the resolution of the 3D scans determining the level. In our approach, we captured the micro‐sculpture but not the first‐order sculptural elements, which explains that fractal dimension and landmark data are not in phase. 4. We can show that analyzing fractal dimensions of gastropod shells opens a window to more detailed information that can be considered in evolutionary and ecological contexts. We propose that using low‐resolution 3D scans may successfully substitute landmark analyses because it overcomes the subjective landmarking. Analyses of 3D scans with higher resolution than used in this study will provide surface roughness information at the mineralogical level. We suggest that fractal dimension analyses of a combination of differently resolved 3D models will significantly improve the quality of shell morphometrics.
format Online
Article
Text
id pubmed-8888252
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-88882522022-03-07 Can fractal dimensions objectivize gastropod shell morphometrics? A case study from Lake Lugu (SW China) Wiese, Robert Harrington, Kyle Hartmann, Kai Hethke, Manja von Rintelen, Thomas Zhang, Hucai Zhang, Le‐Jia Riedel, Frank Ecol Evol Research Articles 1. Morphometrics are fundamental for the analysis of size and shape in fossils, particularly because soft parts or DNA are rarely preserved and hard parts such as shells are commonly the only source of information. Geometric morphometrics, that is, landmark analysis, is well established for the description of shape but it exhibits a couple of shortcomings resulting from subjective choices during landmarking (number and position of landmarks) and from difficulties in resolving shape at the level of micro‐sculpture. 2. With the aid of high‐resolution 3D scanning technology and analyses of fractal dimensions, we test whether such shortcomings of linear and landmark morphometrics can be overcome. As a model group, we selected a clade of modern viviparid gastropods from Lake Lugu, with shells that show a high degree of sculptural variation. Linear and landmark analyses were applied to the same shells in order to establish the fractal dimensions. The genetic diversity of the gastropod clade was assessed. 3. The genetic results suggest that the gastropod clade represents a single species. The results of all morphometric methods applied are in line with the genetic results, which is that no specific morphotype could be delimited. Apart from this overall agreement, landmark and fractal dimension analyses do not correspond to each other but represent data sets with different information. Generally, the fractal dimension values quantify the roughness of the shell surface, the resolution of the 3D scans determining the level. In our approach, we captured the micro‐sculpture but not the first‐order sculptural elements, which explains that fractal dimension and landmark data are not in phase. 4. We can show that analyzing fractal dimensions of gastropod shells opens a window to more detailed information that can be considered in evolutionary and ecological contexts. We propose that using low‐resolution 3D scans may successfully substitute landmark analyses because it overcomes the subjective landmarking. Analyses of 3D scans with higher resolution than used in this study will provide surface roughness information at the mineralogical level. We suggest that fractal dimension analyses of a combination of differently resolved 3D models will significantly improve the quality of shell morphometrics. John Wiley and Sons Inc. 2022-03-01 /pmc/articles/PMC8888252/ /pubmed/35261738 http://dx.doi.org/10.1002/ece3.8622 Text en © 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Wiese, Robert
Harrington, Kyle
Hartmann, Kai
Hethke, Manja
von Rintelen, Thomas
Zhang, Hucai
Zhang, Le‐Jia
Riedel, Frank
Can fractal dimensions objectivize gastropod shell morphometrics? A case study from Lake Lugu (SW China)
title Can fractal dimensions objectivize gastropod shell morphometrics? A case study from Lake Lugu (SW China)
title_full Can fractal dimensions objectivize gastropod shell morphometrics? A case study from Lake Lugu (SW China)
title_fullStr Can fractal dimensions objectivize gastropod shell morphometrics? A case study from Lake Lugu (SW China)
title_full_unstemmed Can fractal dimensions objectivize gastropod shell morphometrics? A case study from Lake Lugu (SW China)
title_short Can fractal dimensions objectivize gastropod shell morphometrics? A case study from Lake Lugu (SW China)
title_sort can fractal dimensions objectivize gastropod shell morphometrics? a case study from lake lugu (sw china)
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8888252/
https://www.ncbi.nlm.nih.gov/pubmed/35261738
http://dx.doi.org/10.1002/ece3.8622
work_keys_str_mv AT wieserobert canfractaldimensionsobjectivizegastropodshellmorphometricsacasestudyfromlakeluguswchina
AT harringtonkyle canfractaldimensionsobjectivizegastropodshellmorphometricsacasestudyfromlakeluguswchina
AT hartmannkai canfractaldimensionsobjectivizegastropodshellmorphometricsacasestudyfromlakeluguswchina
AT hethkemanja canfractaldimensionsobjectivizegastropodshellmorphometricsacasestudyfromlakeluguswchina
AT vonrintelenthomas canfractaldimensionsobjectivizegastropodshellmorphometricsacasestudyfromlakeluguswchina
AT zhanghucai canfractaldimensionsobjectivizegastropodshellmorphometricsacasestudyfromlakeluguswchina
AT zhanglejia canfractaldimensionsobjectivizegastropodshellmorphometricsacasestudyfromlakeluguswchina
AT riedelfrank canfractaldimensionsobjectivizegastropodshellmorphometricsacasestudyfromlakeluguswchina