Cargando…
Parameter Estimation of Two Spiking Neuron Models With Meta-Heuristic Optimization Algorithms
The automatic fitting of spiking neuron models to experimental data is a challenging problem. The integrate and fire model and Hodgkin–Huxley (HH) models represent the two complexity extremes of spiking neural models. Between these two extremes lies two and three differential-equation-based models....
Autores principales: | AbdelAty, Amr M., Fouda, Mohammed E., Eltawil, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8888432/ https://www.ncbi.nlm.nih.gov/pubmed/35250525 http://dx.doi.org/10.3389/fninf.2022.771730 |
Ejemplares similares
-
Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems
por: Guo, Wenzhe, et al.
Publicado: (2021) -
Efficient training of spiking neural networks with temporally-truncated local backpropagation through time
por: Guo, Wenzhe, et al.
Publicado: (2023) -
Programmable constant phase element realization with crossbar arrays
por: Fouda, M.E., et al.
Publicado: (2020) -
Optimal charging of fractional-order circuits with Cuckoo search
por: AbdelAty, A.M., et al.
Publicado: (2020) -
Evolutionary heuristic optimization: genetic algorithms and estimation of distribution algorithms
por: Robles Forcada, Victor, et al.
Publicado: (2004)