Cargando…

Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity?

Osteoarthritis (OA) is a degenerative joint disease affecting millions of people worldwide. In OA, chondrocytes, synovial cells and other joint cells become activated when exposed to an abnormal environment, including mechanical stress, inflammatory cytokines or disorganization of matrix proteins. S...

Descripción completa

Detalles Bibliográficos
Autores principales: Meurot, C., Jacques, C., Martin, C., Sudre, L., Breton, J., Rattenbach, R., Bismuth, K., Berenbaum, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Chinese Speaking Orthopaedic Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8888891/
https://www.ncbi.nlm.nih.gov/pubmed/35280931
http://dx.doi.org/10.1016/j.jot.2022.02.001
Descripción
Sumario:Osteoarthritis (OA) is a degenerative joint disease affecting millions of people worldwide. In OA, chondrocytes, synovial cells and other joint cells become activated when exposed to an abnormal environment, including mechanical stress, inflammatory cytokines or disorganization of matrix proteins. Several analogues of the hormones called incretins have been developed and are used notably for treating type 2 diabetes mellitus. Data has accumulated to suggest that incretinomimetics, which bind to the glucagon-like peptide-1 receptor (GLP-1R), have beneficial pleiotropic effects such as immunomodulation, anti-inflammation and neuronal protection. Thus, because of their anti-inflammatory properties, GLP-1–based therapies could benefit OA patients. This review focuses on the GLP-1R pathway, molecular mechanisms and phenotypes related to OA pathogenesis. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: The search for new therapeutic targets to treat people suffering from OA remains urgent as there is currently no disease-modifyingtherapy available for this disease. This review discusses how GLP-1 analogues could be potential DMOADs for treating OA thanks to their anti-inflammatory, immunoregulatory and differentiation properties.