Cargando…
Nanoemulsions (O/W) containing Cymbopogon pendulus essential oil: development, characterization, stability study, and evaluation of in vitro anti-bacterial, anti-inflammatory, anti-diabetic activities
Essential oil from Cymbopogon pendulus is immensely useful in various sectors like food, pharmaceutical, and cosmetic industries. Since this oil is hydrophobic, unstable, and volatile, hence encapsulation by using nanoemulsions technology is the best way to protect it. This study reports biosynthesi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889062/ https://www.ncbi.nlm.nih.gov/pubmed/35251888 http://dx.doi.org/10.1007/s12668-022-00964-4 |
Sumario: | Essential oil from Cymbopogon pendulus is immensely useful in various sectors like food, pharmaceutical, and cosmetic industries. Since this oil is hydrophobic, unstable, and volatile, hence encapsulation by using nanoemulsions technology is the best way to protect it. This study reports biosynthesis of O/W (oil/water) nanoemulsions based on essential oil from Cymbopogon pendulus and analysis of its biological activities. O/W nanoemulsions were prepared by using tween 20/80, sodium dodecyl sulphate as surfactants, and ethanol as co-surfactants. Fingerprinting of nanoemulsions using UV, fluorescent, and FT-IR was studied along with other parameters like pH and conductivity. Biological activities like antibacterial, anti-inflammatory, and anti-diabetic activities and drug release pharmokinetics were evaluated. Ethanol containing nanoemulsions was noticeably smaller than other nanoemulsions. Encapsulation efficiency of nanoemulsions was in the range from 41 to 60%. Nanoemulsions were spherical in shape and stable even after 50 days of storage. Appreciable biological activities like anti-bacterial, anti-inflammatory, and anti-diabetic activities were detected. Drug kinetic study revealed that nanoemulsions exhibited Korsmeyer-Peppas model. Based on this, the possible role of lemon grass oil-based nanoemulsions in cosmetic, food, and pharma sectors has been discussed. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12668-022-00964-4. |
---|