Cargando…
Dedicated near-infrared oximeter to monitor oxygenation in the superior sagittal sinus in newborn infants: a research agenda
SIGNIFICANCE: Cerebral tissue oximetry is imprecise and confounded by an uncertain and variable arteriovenous volume ratio. Venous saturation is better grounded in physiology. The superior sagittal sinus (SSS) is relatively large and placed under the open fontanel on the top of the head in newborn i...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889124/ https://www.ncbi.nlm.nih.gov/pubmed/35238187 http://dx.doi.org/10.1117/1.JBO.27.7.074703 |
_version_ | 1784661329382998016 |
---|---|
author | Greisen, Gorm |
author_facet | Greisen, Gorm |
author_sort | Greisen, Gorm |
collection | PubMed |
description | SIGNIFICANCE: Cerebral tissue oximetry is imprecise and confounded by an uncertain and variable arteriovenous volume ratio. Venous saturation is better grounded in physiology. The superior sagittal sinus (SSS) is relatively large and placed under the open fontanel on the top of the head in newborn infants. AIM: To enable the development of a dedicated near-infrared-spectroscopy-based cerebral oximeter with sufficient claims on accuracy to be tested for benefit of clinical use. APPROACH: To set up a research agenda based on the combination of dedicated, high-fidelity digital and physical phantoms. RESULTS: A seven-step path is outlined to identify an optode geometry with high sensitivity to variation in hemoglobin-oxygen saturation in the SSS, with little confounding by changes in the optical properties of the skin and scalp or brain tissue, or in the width of the subarachnoidal space, and that is robust to variations in the placement of the optode. CONCLUSION: If an oximeter that is designed after exploration of digital phantoms can produce measurements in physical phantoms with good agreement with predictions, it will contribute credibility that cannot be achieved by direct gold-standard validation in newborn human infants. |
format | Online Article Text |
id | pubmed-8889124 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Society of Photo-Optical Instrumentation Engineers |
record_format | MEDLINE/PubMed |
spelling | pubmed-88891242022-03-04 Dedicated near-infrared oximeter to monitor oxygenation in the superior sagittal sinus in newborn infants: a research agenda Greisen, Gorm J Biomed Opt Special Section on Tissue Phantoms to Advance Biomedical Optical Systems SIGNIFICANCE: Cerebral tissue oximetry is imprecise and confounded by an uncertain and variable arteriovenous volume ratio. Venous saturation is better grounded in physiology. The superior sagittal sinus (SSS) is relatively large and placed under the open fontanel on the top of the head in newborn infants. AIM: To enable the development of a dedicated near-infrared-spectroscopy-based cerebral oximeter with sufficient claims on accuracy to be tested for benefit of clinical use. APPROACH: To set up a research agenda based on the combination of dedicated, high-fidelity digital and physical phantoms. RESULTS: A seven-step path is outlined to identify an optode geometry with high sensitivity to variation in hemoglobin-oxygen saturation in the SSS, with little confounding by changes in the optical properties of the skin and scalp or brain tissue, or in the width of the subarachnoidal space, and that is robust to variations in the placement of the optode. CONCLUSION: If an oximeter that is designed after exploration of digital phantoms can produce measurements in physical phantoms with good agreement with predictions, it will contribute credibility that cannot be achieved by direct gold-standard validation in newborn human infants. Society of Photo-Optical Instrumentation Engineers 2022-03-02 2022-07 /pmc/articles/PMC8889124/ /pubmed/35238187 http://dx.doi.org/10.1117/1.JBO.27.7.074703 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. |
spellingShingle | Special Section on Tissue Phantoms to Advance Biomedical Optical Systems Greisen, Gorm Dedicated near-infrared oximeter to monitor oxygenation in the superior sagittal sinus in newborn infants: a research agenda |
title | Dedicated near-infrared oximeter to monitor oxygenation in the superior sagittal sinus in newborn infants: a research agenda |
title_full | Dedicated near-infrared oximeter to monitor oxygenation in the superior sagittal sinus in newborn infants: a research agenda |
title_fullStr | Dedicated near-infrared oximeter to monitor oxygenation in the superior sagittal sinus in newborn infants: a research agenda |
title_full_unstemmed | Dedicated near-infrared oximeter to monitor oxygenation in the superior sagittal sinus in newborn infants: a research agenda |
title_short | Dedicated near-infrared oximeter to monitor oxygenation in the superior sagittal sinus in newborn infants: a research agenda |
title_sort | dedicated near-infrared oximeter to monitor oxygenation in the superior sagittal sinus in newborn infants: a research agenda |
topic | Special Section on Tissue Phantoms to Advance Biomedical Optical Systems |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889124/ https://www.ncbi.nlm.nih.gov/pubmed/35238187 http://dx.doi.org/10.1117/1.JBO.27.7.074703 |
work_keys_str_mv | AT greisengorm dedicatednearinfraredoximetertomonitoroxygenationinthesuperiorsagittalsinusinnewborninfantsaresearchagenda |