Cargando…
Predicting Mutational Status of Driver and Suppressor Genes Directly from Histopathology With Deep Learning: A Systematic Study Across 23 Solid Tumor Types
In the last four years, advances in Deep Learning technology have enabled the inference of selected mutational alterations directly from routine histopathology slides. In particular, recent studies have shown that genetic changes in clinically relevant driver genes are reflected in the histological...
Autores principales: | Loeffler, Chiara Maria Lavinia, Gaisa, Nadine T., Muti, Hannah Sophie, van Treeck, Marko, Echle, Amelie, Ghaffari Laleh, Narmin, Trautwein, Christian, Heij, Lara R., Grabsch, Heike I., Ortiz Bruechle, Nadina, Kather, Jakob Nikolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889144/ https://www.ncbi.nlm.nih.gov/pubmed/35251119 http://dx.doi.org/10.3389/fgene.2021.806386 |
Ejemplares similares
-
Classical mathematical models for prediction of response to chemotherapy and immunotherapy
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022) -
Direct prediction of Homologous Recombination Deficiency from routine histology in ten different tumor types with attention-based Multiple Instance Learning: a development and validation study
por: Loeffler, Chiara Maria Lavinia, et al.
Publicado: (2023) -
Characterisation of tumour-immune phenotypes and PD-L1 positivity in squamous bladder cancer
por: Jung, Max, et al.
Publicado: (2023) -
Swarm learning for decentralized artificial intelligence in cancer histopathology
por: Saldanha, Oliver Lester, et al.
Publicado: (2022) -
Medical domain knowledge in domain-agnostic generative AI
por: Kather, Jakob Nikolas, et al.
Publicado: (2022)