Cargando…
Synthesis of novel silica encapsulated spiropyran-based thermochromic materials
A series of novel spiropyrans were synthesized through the condensation of substituted 3,3-dimethyl-2-methyleneindoline with different nitro-substituted o-hydroxy aromatic aldehydes. Indoles were initially substituted with a variety of alkanes and esters moieties. The substituted 3,3-dimethyl-2-meth...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889169/ https://www.ncbi.nlm.nih.gov/pubmed/35251675 http://dx.doi.org/10.1098/rsos.211385 |
Sumario: | A series of novel spiropyrans were synthesized through the condensation of substituted 3,3-dimethyl-2-methyleneindoline with different nitro-substituted o-hydroxy aromatic aldehydes. Indoles were initially substituted with a variety of alkanes and esters moieties. The substituted 3,3-dimethyl-2-methyleneindoline was then reacted with nitro-substituted o-hydroxy aromatic aldehydes to yield the respective spiropyrans. The synthesized novel spiropyrans were encapsulated in silica nano-shells to protect them from the effect of moisture and pH. The thermochromic behaviour of novel spiropyrans was studied by UV-visible spectroscopy. The thermally induced isomerization of spiropyran derivatives was carried out in a water/ethanol mixture. The thermal isomerization of spiro-heterocyclic (colourless form) to merocyanine (MC) (coloured form) was a discontinuous process and was observed in a temperature range of 5–60°C via UV-visible spectrometer. The absorption process occurs reversibly regardless of the heating/cooling sequence. The spiropyran derivatives, therefore, have a potential application for colorimetric temperature indication. |
---|