Cargando…
Improved image classification explainability with high-accuracy heatmaps
Deep learning models have become increasingly used for image-based classification. In critical applications such as medical imaging, it is important to convey the reasoning behind the models' decisions in human-understandable forms. In this work, we propose Pyramid Localization Network (PYLON),...
Autores principales: | Preechakul, Konpat, Sriswasdi, Sira, Kijsirikul, Boonserm, Chuangsuwanich, Ekapol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889368/ https://www.ncbi.nlm.nih.gov/pubmed/35252819 http://dx.doi.org/10.1016/j.isci.2022.103933 |
Ejemplares similares
-
Label-free tumor cells classification using deep learning and high-content imaging
por: Piansaddhayanon, Chawan, et al.
Publicado: (2023) -
MHCSeqNet: a deep neural network model for universal MHC binding prediction
por: Phloyphisut, Poomarin, et al.
Publicado: (2019) -
Improving disease classification performance and explainability of deep learning models in radiology with heatmap generators
por: Watanabe, Akino, et al.
Publicado: (2022) -
Heatmap3: an improved heatmap package with more powerful and convenient features
por: Zhao, Shilin, et al.
Publicado: (2014) -
Enhancing Network Visibility and Security with Advanced Port Scanning Techniques
por: Abu Bakar, Rana, et al.
Publicado: (2023)