Cargando…
Quantifying the impact of physical activity on future glucose trends using machine learning
Prevention of hypoglycemia (glucose <70 mg/dL) during aerobic exercise is a major challenge in type 1 diabetes. Providing predictions of glycemic changes during and following exercise can help people with type 1 diabetes avoid hypoglycemia. A unique dataset representing 320 days and 50,000 + time...
Autores principales: | Tyler, Nichole S., Mosquera-Lopez, Clara, Young, Gavin M., El Youssef, Joseph, Castle, Jessica R., Jacobs, Peter G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889374/ https://www.ncbi.nlm.nih.gov/pubmed/35252806 http://dx.doi.org/10.1016/j.isci.2022.103888 |
Ejemplares similares
-
A statistical virtual patient population for the glucoregulatory system in type 1 diabetes with integrated exercise model
por: Resalat, Navid, et al.
Publicado: (2019) -
An artificial intelligence decision support system for the management of type 1 diabetes
por: Tyler, Nichole S., et al.
Publicado: (2020) -
Accuracy of the Dexcom G6 Glucose Sensor during Aerobic, Resistance, and Interval Exercise in Adults with Type 1 Diabetes
por: Guillot, Florian H., et al.
Publicado: (2020) -
Enabling fully automated insulin delivery through meal detection and size estimation using Artificial Intelligence
por: Mosquera-Lopez, Clara, et al.
Publicado: (2023) -
Integrating metabolic expenditure information from wearable fitness sensors into an AI-augmented automated insulin delivery system: a randomised clinical trial
por: Jacobs, Peter G, et al.
Publicado: (2023)