Cargando…

High-resolution 3D fluorescent imaging of intact tissues

Histological analysis of fluorescently labeled tissues has been a critical tool to understand molecular organization in situ. However, assessing molecular structures within large cells and in the context of human organ anatomy has been challenging because it requires penetration of staining reagents...

Descripción completa

Detalles Bibliográficos
Autores principales: El-Nachef, Danny, Martinson, Amy M., Yang, Xiulan, Murry, Charles E., MacLellan, W. Robb
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889375/
https://www.ncbi.nlm.nih.gov/pubmed/35243481
http://dx.doi.org/10.46439/cardiology.1.001
Descripción
Sumario:Histological analysis of fluorescently labeled tissues has been a critical tool to understand molecular organization in situ. However, assessing molecular structures within large cells and in the context of human organ anatomy has been challenging because it requires penetration of staining reagents and light deep into opaque tissues, while also conforming to the spatial constraints of high-resolution objective lenses. This methodology article describes optimized sample preparation for sub-micron resolution 3D imaging in human and rodent tissues, yielding imaging depth (>100 μm) and resolution (<0.012 μm(3) voxel size) that has previously been limited to whole-mount in vitro organoid systems, embryos, and small model organisms. Confocal images of adult human and rodent organs, including heart, kidney, and liver, were generated for several chemical and antibody stains in cleared tissue sections >100 μm thick. This method can be readily adopted by any lab performing routine histology and takes 3 days from the start of tissue preparation to 3D images.