Cargando…
Deep Learning-Based Mapping of Tumor Infiltrating Lymphocytes in Whole Slide Images of 23 Types of Cancer
The role of tumor infiltrating lymphocytes (TILs) as a biomarker to predict disease progression and clinical outcomes has generated tremendous interest in translational cancer research. We present an updated and enhanced deep learning workflow to classify 50x50 um tiled image patches (100x100 pixels...
Autores principales: | Abousamra, Shahira, Gupta, Rajarsi, Hou, Le, Batiste, Rebecca, Zhao, Tianhao, Shankar, Anand, Rao, Arvind, Chen, Chao, Samaras, Dimitris, Kurc, Tahsin, Saltz, Joel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889499/ https://www.ncbi.nlm.nih.gov/pubmed/35251953 http://dx.doi.org/10.3389/fonc.2021.806603 |
Ejemplares similares
-
Comparison of Different Classifiers with Active Learning to Support Quality Control in Nucleus Segmentation in Pathology Images
por: Wen, Si, et al.
Publicado: (2018) -
Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images
por: Fassler, Danielle J., et al.
Publicado: (2020) -
Publisher Correction to: Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images
por: Fassler, Danielle J., et al.
Publicado: (2020) -
Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types
por: Hou, Le, et al.
Publicado: (2020) -
Spatial Characterization of Tumor-Infiltrating Lymphocytes and Breast Cancer Progression
por: Fassler, Danielle J., et al.
Publicado: (2022)