Cargando…

From dynamic self-organization to avalanching instabilities in soft-granular threads

We study the dynamics of threads of monodisperse droplets, including droplet chains and multi-chains, in which the droplets are interconnected by capillary bridges of another immiscible liquid phase. This system represents wet soft-granular matter – a class of granular materials in which the grains...

Descripción completa

Detalles Bibliográficos
Autores principales: Guzowski, J., Buda, R. J., Costantini, M., Ćwiklińska, M., Garstecki, P., Stone, H. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889560/
https://www.ncbi.nlm.nih.gov/pubmed/35166293
http://dx.doi.org/10.1039/d1sm01350e
_version_ 1784661429865938944
author Guzowski, J.
Buda, R. J.
Costantini, M.
Ćwiklińska, M.
Garstecki, P.
Stone, H. A.
author_facet Guzowski, J.
Buda, R. J.
Costantini, M.
Ćwiklińska, M.
Garstecki, P.
Stone, H. A.
author_sort Guzowski, J.
collection PubMed
description We study the dynamics of threads of monodisperse droplets, including droplet chains and multi-chains, in which the droplets are interconnected by capillary bridges of another immiscible liquid phase. This system represents wet soft-granular matter – a class of granular materials in which the grains are soft and wetted by thin fluid films—with other examples including wet granular hydrogels or foams. In contrast to wet granular matter with rigid grains (e.g., wet sand), studied previously, the deformability of the grains raises the number of available metastable states and facilitates rearrangements which allow for reorganization and self-assembly of the system under external drive, e.g., applied via viscous forces. We use a co-flow configuration to generate a variety of unique low-dimensional regular granular patterns, intermediate between 1D and 2D, ranging from linear chains and chains with periodically occurring folds to multi-chains and segmented structures including chains of finite length. In particular, we observe that the partially folded chains self-organize via limit cycle of displacements and rearrangements occurring at a frequency self-adapted to the rate of build-up of compressive strain in the chain induced by the viscous forces. Upon weakening of the capillary arrest of the droplets, we observe spontaneous fluidization of the quasi-solid structures and avalanches of rearrangements. We identify two types of fluidization-induced instabilities and rationalize them in terms of a competition between advection and propagation. While we use aqueous droplets as the grains we demonstrate that the reported mechanisms of adaptive self-assembly apply to other types of soft granular systems including foams and microgels. We discuss possible application of the reported quasi-1D compartmentalized structures in tissue engineering, bioprinting and materials science.
format Online
Article
Text
id pubmed-8889560
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-88895602022-03-24 From dynamic self-organization to avalanching instabilities in soft-granular threads Guzowski, J. Buda, R. J. Costantini, M. Ćwiklińska, M. Garstecki, P. Stone, H. A. Soft Matter Chemistry We study the dynamics of threads of monodisperse droplets, including droplet chains and multi-chains, in which the droplets are interconnected by capillary bridges of another immiscible liquid phase. This system represents wet soft-granular matter – a class of granular materials in which the grains are soft and wetted by thin fluid films—with other examples including wet granular hydrogels or foams. In contrast to wet granular matter with rigid grains (e.g., wet sand), studied previously, the deformability of the grains raises the number of available metastable states and facilitates rearrangements which allow for reorganization and self-assembly of the system under external drive, e.g., applied via viscous forces. We use a co-flow configuration to generate a variety of unique low-dimensional regular granular patterns, intermediate between 1D and 2D, ranging from linear chains and chains with periodically occurring folds to multi-chains and segmented structures including chains of finite length. In particular, we observe that the partially folded chains self-organize via limit cycle of displacements and rearrangements occurring at a frequency self-adapted to the rate of build-up of compressive strain in the chain induced by the viscous forces. Upon weakening of the capillary arrest of the droplets, we observe spontaneous fluidization of the quasi-solid structures and avalanches of rearrangements. We identify two types of fluidization-induced instabilities and rationalize them in terms of a competition between advection and propagation. While we use aqueous droplets as the grains we demonstrate that the reported mechanisms of adaptive self-assembly apply to other types of soft granular systems including foams and microgels. We discuss possible application of the reported quasi-1D compartmentalized structures in tissue engineering, bioprinting and materials science. The Royal Society of Chemistry 2022-02-15 /pmc/articles/PMC8889560/ /pubmed/35166293 http://dx.doi.org/10.1039/d1sm01350e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Guzowski, J.
Buda, R. J.
Costantini, M.
Ćwiklińska, M.
Garstecki, P.
Stone, H. A.
From dynamic self-organization to avalanching instabilities in soft-granular threads
title From dynamic self-organization to avalanching instabilities in soft-granular threads
title_full From dynamic self-organization to avalanching instabilities in soft-granular threads
title_fullStr From dynamic self-organization to avalanching instabilities in soft-granular threads
title_full_unstemmed From dynamic self-organization to avalanching instabilities in soft-granular threads
title_short From dynamic self-organization to avalanching instabilities in soft-granular threads
title_sort from dynamic self-organization to avalanching instabilities in soft-granular threads
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889560/
https://www.ncbi.nlm.nih.gov/pubmed/35166293
http://dx.doi.org/10.1039/d1sm01350e
work_keys_str_mv AT guzowskij fromdynamicselforganizationtoavalanchinginstabilitiesinsoftgranularthreads
AT budarj fromdynamicselforganizationtoavalanchinginstabilitiesinsoftgranularthreads
AT costantinim fromdynamicselforganizationtoavalanchinginstabilitiesinsoftgranularthreads
AT cwiklinskam fromdynamicselforganizationtoavalanchinginstabilitiesinsoftgranularthreads
AT garsteckip fromdynamicselforganizationtoavalanchinginstabilitiesinsoftgranularthreads
AT stoneha fromdynamicselforganizationtoavalanchinginstabilitiesinsoftgranularthreads