Cargando…

Homochiral Mn(3+) Spin-Crossover Complexes: A Structural and Spectroscopic Study

[Image: see text] Structural, magnetic, and spectroscopic data on a Mn(3+) spin-crossover complex with Schiff base ligand 4-OMe-Sal(2)323, isolated in crystal lattices with five different counteranions, are reported. Complexes of [Mn(4-OMe-Sal(2)323)]X where X = ClO(4)(–) (1), BF(4)(–) (2), NO(3)(–)...

Descripción completa

Detalles Bibliográficos
Autores principales: Kühne, Irina A., Ozarowski, Andrew, Sultan, Aizuddin, Esien, Kane, Carter, Anthony B., Wix, Paul, Casey, Aoife, Heerah-Booluck, Mooneerah, Keene, Tony D., Müller-Bunz, Helge, Felton, Solveig, Hill, Stephen, Morgan, Grace G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889584/
https://www.ncbi.nlm.nih.gov/pubmed/35175771
http://dx.doi.org/10.1021/acs.inorgchem.1c03379
Descripción
Sumario:[Image: see text] Structural, magnetic, and spectroscopic data on a Mn(3+) spin-crossover complex with Schiff base ligand 4-OMe-Sal(2)323, isolated in crystal lattices with five different counteranions, are reported. Complexes of [Mn(4-OMe-Sal(2)323)]X where X = ClO(4)(–) (1), BF(4)(–) (2), NO(3)(–) (3), Br(–) (4), and I(–) (5) crystallize isotypically in the chiral orthorhombic space group P2(1)2(1)2 with a range of spin state preferences for the [Mn(4-OMe-Sal(2)323)](+) complex cation over the temperature range 5–300 K. Complexes 1 and 2 are high-spin, complex 4 undergoes a gradual and complete thermal spin crossover, while complexes 3 and 5 show stepped crossovers with different ratios of spin triplet and quintet forms in the intermediate temperature range. High-field electron paramagnetic resonance was used to measure the zero-field splitting parameters associated with the spin triplet and quintet states at temperatures below 10 K for complexes 4 and 2 with respective values: D(S)(=1) = +23.38(1) cm(–1), E(S)(=1) = +2.79(1) cm(–1), and D(S)(=2) = +6.9(3) cm(–1), with a distribution of E parameters for the S = 2 state. Solid-state circular dichroism (CD) spectra on high-spin complex 1 at room temperature reveal a 2:1 ratio of enantiomers in the chiral conglomerate, and solution CD measurements on the same sample in methanol show that it is stable toward racemization. Solid-state UV–vis absorption spectra on high-spin complex 1 and mixed S = 1/S = 2 sample 5 reveal different intensities at higher energies, in line with the different electronic composition. The statistical prevalence of homochiral crystallization of [Mn(4-OMe-Sal(2)323)](+) in five lattices with different achiral counterions suggests that the chirality may be directed by the 4-OMe-Sal(2)323 ligand.