Cargando…

Conversion of 2D MXene to Multi‐Low‐Dimensional GerMXene Superlattice Heterostructure

Integration of 2D structures into other low‐dimensional materials results in the development of distinct van der Waals heterostructures (vdWHSs) with enhanced properties. However, obtaining 2D–1D–0D vdWHSs of technologically useful next generation materials, transition‐metal carbide MXene and monoel...

Descripción completa

Detalles Bibliográficos
Autores principales: Rafieerad, Alireza, Amiri, Ahmad, Yan, Weiang, Eshghi, Hossein, Dhingra, Sanjiv
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889893/
https://www.ncbi.nlm.nih.gov/pubmed/35264919
http://dx.doi.org/10.1002/adfm.202108495
Descripción
Sumario:Integration of 2D structures into other low‐dimensional materials results in the development of distinct van der Waals heterostructures (vdWHSs) with enhanced properties. However, obtaining 2D–1D–0D vdWHSs of technologically useful next generation materials, transition‐metal carbide MXene and monoelemental Xene nanosheets in a single superlattice heterostructure is still challenging. Here, the fabrication of a new multidimensional superlattice heterostructure “GerMXene” from exfoliated M(3)X(2)T (x) MXene and hydrogenated germanane (GeH) crystals, is reported. Direct experimental evidence for conversion of hydrothermally activated titanium carbide MXene (A‐MXene) to GerMXene heterostructure through the rapid and spontaneous formation of titanium germanide (TiGe(2) and Ti(6)Ge(5)) bonds, is provided. The obtained GerMXene heterostructure possesses enhanced surface properties, aqueous dispersibility, and Dirac signature of embedded GeH nanosheets as well as quantum dots. GerMXene exhibits functional bioactivity, electrical conductivity, and negative surface charge, paving ways for its applications in biomedical field, electronics, and energy storage.