Cargando…

Conversion of 2D MXene to Multi‐Low‐Dimensional GerMXene Superlattice Heterostructure

Integration of 2D structures into other low‐dimensional materials results in the development of distinct van der Waals heterostructures (vdWHSs) with enhanced properties. However, obtaining 2D–1D–0D vdWHSs of technologically useful next generation materials, transition‐metal carbide MXene and monoel...

Descripción completa

Detalles Bibliográficos
Autores principales: Rafieerad, Alireza, Amiri, Ahmad, Yan, Weiang, Eshghi, Hossein, Dhingra, Sanjiv
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889893/
https://www.ncbi.nlm.nih.gov/pubmed/35264919
http://dx.doi.org/10.1002/adfm.202108495
_version_ 1784661512622702592
author Rafieerad, Alireza
Amiri, Ahmad
Yan, Weiang
Eshghi, Hossein
Dhingra, Sanjiv
author_facet Rafieerad, Alireza
Amiri, Ahmad
Yan, Weiang
Eshghi, Hossein
Dhingra, Sanjiv
author_sort Rafieerad, Alireza
collection PubMed
description Integration of 2D structures into other low‐dimensional materials results in the development of distinct van der Waals heterostructures (vdWHSs) with enhanced properties. However, obtaining 2D–1D–0D vdWHSs of technologically useful next generation materials, transition‐metal carbide MXene and monoelemental Xene nanosheets in a single superlattice heterostructure is still challenging. Here, the fabrication of a new multidimensional superlattice heterostructure “GerMXene” from exfoliated M(3)X(2)T (x) MXene and hydrogenated germanane (GeH) crystals, is reported. Direct experimental evidence for conversion of hydrothermally activated titanium carbide MXene (A‐MXene) to GerMXene heterostructure through the rapid and spontaneous formation of titanium germanide (TiGe(2) and Ti(6)Ge(5)) bonds, is provided. The obtained GerMXene heterostructure possesses enhanced surface properties, aqueous dispersibility, and Dirac signature of embedded GeH nanosheets as well as quantum dots. GerMXene exhibits functional bioactivity, electrical conductivity, and negative surface charge, paving ways for its applications in biomedical field, electronics, and energy storage.
format Online
Article
Text
id pubmed-8889893
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-88898932022-03-07 Conversion of 2D MXene to Multi‐Low‐Dimensional GerMXene Superlattice Heterostructure Rafieerad, Alireza Amiri, Ahmad Yan, Weiang Eshghi, Hossein Dhingra, Sanjiv Adv Funct Mater Research Articles Integration of 2D structures into other low‐dimensional materials results in the development of distinct van der Waals heterostructures (vdWHSs) with enhanced properties. However, obtaining 2D–1D–0D vdWHSs of technologically useful next generation materials, transition‐metal carbide MXene and monoelemental Xene nanosheets in a single superlattice heterostructure is still challenging. Here, the fabrication of a new multidimensional superlattice heterostructure “GerMXene” from exfoliated M(3)X(2)T (x) MXene and hydrogenated germanane (GeH) crystals, is reported. Direct experimental evidence for conversion of hydrothermally activated titanium carbide MXene (A‐MXene) to GerMXene heterostructure through the rapid and spontaneous formation of titanium germanide (TiGe(2) and Ti(6)Ge(5)) bonds, is provided. The obtained GerMXene heterostructure possesses enhanced surface properties, aqueous dispersibility, and Dirac signature of embedded GeH nanosheets as well as quantum dots. GerMXene exhibits functional bioactivity, electrical conductivity, and negative surface charge, paving ways for its applications in biomedical field, electronics, and energy storage. John Wiley and Sons Inc. 2021-11-30 2022-03-02 /pmc/articles/PMC8889893/ /pubmed/35264919 http://dx.doi.org/10.1002/adfm.202108495 Text en © 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Rafieerad, Alireza
Amiri, Ahmad
Yan, Weiang
Eshghi, Hossein
Dhingra, Sanjiv
Conversion of 2D MXene to Multi‐Low‐Dimensional GerMXene Superlattice Heterostructure
title Conversion of 2D MXene to Multi‐Low‐Dimensional GerMXene Superlattice Heterostructure
title_full Conversion of 2D MXene to Multi‐Low‐Dimensional GerMXene Superlattice Heterostructure
title_fullStr Conversion of 2D MXene to Multi‐Low‐Dimensional GerMXene Superlattice Heterostructure
title_full_unstemmed Conversion of 2D MXene to Multi‐Low‐Dimensional GerMXene Superlattice Heterostructure
title_short Conversion of 2D MXene to Multi‐Low‐Dimensional GerMXene Superlattice Heterostructure
title_sort conversion of 2d mxene to multi‐low‐dimensional germxene superlattice heterostructure
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8889893/
https://www.ncbi.nlm.nih.gov/pubmed/35264919
http://dx.doi.org/10.1002/adfm.202108495
work_keys_str_mv AT rafieeradalireza conversionof2dmxenetomultilowdimensionalgermxenesuperlatticeheterostructure
AT amiriahmad conversionof2dmxenetomultilowdimensionalgermxenesuperlatticeheterostructure
AT yanweiang conversionof2dmxenetomultilowdimensionalgermxenesuperlatticeheterostructure
AT eshghihossein conversionof2dmxenetomultilowdimensionalgermxenesuperlatticeheterostructure
AT dhingrasanjiv conversionof2dmxenetomultilowdimensionalgermxenesuperlatticeheterostructure