Cargando…
Large-scale identification of aortic stenosis and its severity using natural language processing on electronic health records
BACKGROUND: Systematic case identification is critical to improving population health, but widely used diagnosis code–based approaches for conditions like valvular heart disease are inaccurate and lack specificity. OBJECTIVE: To develop and validate natural language processing (NLP) algorithms to id...
Autores principales: | Solomon, Matthew D., Tabada, Grace, Allen, Amanda, Sung, Sue Hee, Go, Alan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890044/ https://www.ncbi.nlm.nih.gov/pubmed/35265904 http://dx.doi.org/10.1016/j.cvdhj.2021.03.003 |
Ejemplares similares
-
Natural language generation for electronic health records
por: Lee, Scott H.
Publicado: (2018) -
Contemporary Reevaluation of Race and Ethnicity With Outcomes in Heart Failure
por: Savitz, Samuel T., et al.
Publicado: (2021) -
A large language model for electronic health records
por: Yang, Xi, et al.
Publicado: (2022) -
Natural history observations in moderate aortic stenosis
por: Du, Yu, et al.
Publicado: (2021) -
Detecting inpatient falls by using natural language processing of electronic medical records
por: Toyabe, Shin-ichi
Publicado: (2012)