Cargando…

Electrooxidative palladium- and enantioselective rhodium-catalyzed [3 + 2] spiroannulations

Despite indisputable progress in the development of electrochemical transformations, electrocatalytic annulations for the synthesis of biologically relevant three-dimensional spirocyclic compounds has as of yet not been accomplished. In sharp contrast, herein, we describe the palladaelectro-catalyze...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Wen, Scheremetjew, Alexej, Ackermann, Lutz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890123/
https://www.ncbi.nlm.nih.gov/pubmed/35340855
http://dx.doi.org/10.1039/d1sc07124f
Descripción
Sumario:Despite indisputable progress in the development of electrochemical transformations, electrocatalytic annulations for the synthesis of biologically relevant three-dimensional spirocyclic compounds has as of yet not been accomplished. In sharp contrast, herein, we describe the palladaelectro-catalyzed C–H activation/[3 + 2] spiroannulation of alkynes by 1-aryl-2-naphthols. Likewise, a cationic rhodium(iii) catalyst was shown to enable electrooxidative [3 + 2] spiroannulations via formal C(sp(3))–H activations. The versatile spiroannulations featured a broad substrate scope, employing electricity as a green oxidant in lieu of stoichiometric chemical oxidants under mild conditions. An array of spirocyclic enones and diverse spiropyrazolones, bearing all-carbon quaternary stereogenic centers were thereby accessed in a user-friendly undivided cell setup, with molecular hydrogen as the sole byproduct.