Cargando…
The photodissociation of solvated cyclopropanone and its hydrate explored via non-adiabatic molecular dynamics using ΔSCF
The decay of cyclopropanone is a typical example of a photodecomposition process. Ethylene and carbon monoxide are formed following the excitation to the first singlet excited state through a symmetrical or asymmetrical pathway. The results obtained with non-adiabatic molecular dynamics (NAMD) using...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890323/ https://www.ncbi.nlm.nih.gov/pubmed/35179527 http://dx.doi.org/10.1039/d1cp05187c |
_version_ | 1784661609629614080 |
---|---|
author | Vandaele, Eva Mališ, Momir Luber, Sandra |
author_facet | Vandaele, Eva Mališ, Momir Luber, Sandra |
author_sort | Vandaele, Eva |
collection | PubMed |
description | The decay of cyclopropanone is a typical example of a photodecomposition process. Ethylene and carbon monoxide are formed following the excitation to the first singlet excited state through a symmetrical or asymmetrical pathway. The results obtained with non-adiabatic molecular dynamics (NAMD) using the delta self-consistent field (ΔSCF) method correspond well to previous experimental and multireference theoretical studies carried out in the gas phase. Moreover, this efficient methodology allows NAMD simulations of cyclopropanone in aqueous solution to be performed, which reveal analogue deactivation mechanisms, but a shorter lifetime and reduced photodissociation as compared to the gas-phase. The excited state dynamics of cyclopropanone hydrate, an enzyme inhibitor, in an aqueous environment are reported as well. Cyclopropanone hydrate strongly interacts with the surrounding solvent via the formation of hydrogen bonds. Excitation to the first singlet excited state shows an asymmetric pathway with cyclopropanone hydrate and propionic acid as the main photoproducts. |
format | Online Article Text |
id | pubmed-8890323 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-88903232022-03-29 The photodissociation of solvated cyclopropanone and its hydrate explored via non-adiabatic molecular dynamics using ΔSCF Vandaele, Eva Mališ, Momir Luber, Sandra Phys Chem Chem Phys Chemistry The decay of cyclopropanone is a typical example of a photodecomposition process. Ethylene and carbon monoxide are formed following the excitation to the first singlet excited state through a symmetrical or asymmetrical pathway. The results obtained with non-adiabatic molecular dynamics (NAMD) using the delta self-consistent field (ΔSCF) method correspond well to previous experimental and multireference theoretical studies carried out in the gas phase. Moreover, this efficient methodology allows NAMD simulations of cyclopropanone in aqueous solution to be performed, which reveal analogue deactivation mechanisms, but a shorter lifetime and reduced photodissociation as compared to the gas-phase. The excited state dynamics of cyclopropanone hydrate, an enzyme inhibitor, in an aqueous environment are reported as well. Cyclopropanone hydrate strongly interacts with the surrounding solvent via the formation of hydrogen bonds. Excitation to the first singlet excited state shows an asymmetric pathway with cyclopropanone hydrate and propionic acid as the main photoproducts. The Royal Society of Chemistry 2022-02-18 /pmc/articles/PMC8890323/ /pubmed/35179527 http://dx.doi.org/10.1039/d1cp05187c Text en This journal is © the Owner Societies https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Vandaele, Eva Mališ, Momir Luber, Sandra The photodissociation of solvated cyclopropanone and its hydrate explored via non-adiabatic molecular dynamics using ΔSCF |
title | The photodissociation of solvated cyclopropanone and its hydrate explored via non-adiabatic molecular dynamics using ΔSCF |
title_full | The photodissociation of solvated cyclopropanone and its hydrate explored via non-adiabatic molecular dynamics using ΔSCF |
title_fullStr | The photodissociation of solvated cyclopropanone and its hydrate explored via non-adiabatic molecular dynamics using ΔSCF |
title_full_unstemmed | The photodissociation of solvated cyclopropanone and its hydrate explored via non-adiabatic molecular dynamics using ΔSCF |
title_short | The photodissociation of solvated cyclopropanone and its hydrate explored via non-adiabatic molecular dynamics using ΔSCF |
title_sort | photodissociation of solvated cyclopropanone and its hydrate explored via non-adiabatic molecular dynamics using δscf |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890323/ https://www.ncbi.nlm.nih.gov/pubmed/35179527 http://dx.doi.org/10.1039/d1cp05187c |
work_keys_str_mv | AT vandaeleeva thephotodissociationofsolvatedcyclopropanoneanditshydrateexploredvianonadiabaticmoleculardynamicsusingdscf AT malismomir thephotodissociationofsolvatedcyclopropanoneanditshydrateexploredvianonadiabaticmoleculardynamicsusingdscf AT lubersandra thephotodissociationofsolvatedcyclopropanoneanditshydrateexploredvianonadiabaticmoleculardynamicsusingdscf AT vandaeleeva photodissociationofsolvatedcyclopropanoneanditshydrateexploredvianonadiabaticmoleculardynamicsusingdscf AT malismomir photodissociationofsolvatedcyclopropanoneanditshydrateexploredvianonadiabaticmoleculardynamicsusingdscf AT lubersandra photodissociationofsolvatedcyclopropanoneanditshydrateexploredvianonadiabaticmoleculardynamicsusingdscf |