Cargando…

Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass

BACKGROUND: Cardiac magnetic resonance (CMR) is the gold standard for left ventricular hypertrophy (LVH) diagnosis. CMR-derived LV mass can be estimated using proprietary algorithms (eg, InlineVF), but their accuracy and availability may be limited. OBJECTIVE: To develop an open-source deep learning...

Descripción completa

Detalles Bibliográficos
Autores principales: Khurshid, Shaan, Friedman, Samuel Freesun, Pirruccello, James P., Di Achille, Paolo, Diamant, Nathaniel, Anderson, Christopher D., Ellinor, Patrick T., Batra, Puneet, Ho, Jennifer E., Philippakis, Anthony A., Lubitz, Steven A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890333/
https://www.ncbi.nlm.nih.gov/pubmed/35265898
http://dx.doi.org/10.1016/j.cvdhj.2021.03.001
Descripción
Sumario:BACKGROUND: Cardiac magnetic resonance (CMR) is the gold standard for left ventricular hypertrophy (LVH) diagnosis. CMR-derived LV mass can be estimated using proprietary algorithms (eg, InlineVF), but their accuracy and availability may be limited. OBJECTIVE: To develop an open-source deep learning model to estimate CMR-derived LV mass. METHODS: Within participants of the UK Biobank prospective cohort undergoing CMR, we trained 2 convolutional neural networks to estimate LV mass. The first (ML4H(reg)) performed regression informed by manually labeled LV mass (available in 5065 individuals), while the second (ML4H(seg)) performed LV segmentation informed by InlineVF (version D13A) contours. We compared ML4H(reg), ML4H(seg), and InlineVF against manually labeled LV mass within an independent holdout set using Pearson correlation and mean absolute error (MAE). We assessed associations between CMR-derived LVH and prevalent cardiovascular disease using logistic regression adjusted for age and sex. RESULTS: We generated CMR-derived LV mass estimates within 38,574 individuals. Among 891 individuals in the holdout set, ML4H(seg) reproduced manually labeled LV mass more accurately (r = 0.864, 95% confidence interval [CI] 0.847–0.880; MAE 10.41 g, 95% CI 9.82–10.99) than ML4H(reg) (r = 0.843, 95% CI 0.823–0.861; MAE 10.51, 95% CI 9.86–11.15, P = .01) and InlineVF (r = 0.795, 95% CI 0.770–0.818; MAE 14.30, 95% CI 13.46–11.01, P < .01). LVH defined using ML4H(seg) demonstrated the strongest associations with hypertension (odds ratio 2.76, 95% CI 2.51–3.04), atrial fibrillation (1.75, 95% CI 1.37–2.20), and heart failure (4.67, 95% CI 3.28–6.49). CONCLUSIONS: ML4H(seg) is an open-source deep learning model providing automated quantification of CMR-derived LV mass. Deep learning models characterizing cardiac structure may facilitate broad cardiovascular discovery.