Cargando…

Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass

BACKGROUND: Cardiac magnetic resonance (CMR) is the gold standard for left ventricular hypertrophy (LVH) diagnosis. CMR-derived LV mass can be estimated using proprietary algorithms (eg, InlineVF), but their accuracy and availability may be limited. OBJECTIVE: To develop an open-source deep learning...

Descripción completa

Detalles Bibliográficos
Autores principales: Khurshid, Shaan, Friedman, Samuel Freesun, Pirruccello, James P., Di Achille, Paolo, Diamant, Nathaniel, Anderson, Christopher D., Ellinor, Patrick T., Batra, Puneet, Ho, Jennifer E., Philippakis, Anthony A., Lubitz, Steven A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890333/
https://www.ncbi.nlm.nih.gov/pubmed/35265898
http://dx.doi.org/10.1016/j.cvdhj.2021.03.001
_version_ 1784661611591499776
author Khurshid, Shaan
Friedman, Samuel Freesun
Pirruccello, James P.
Di Achille, Paolo
Diamant, Nathaniel
Anderson, Christopher D.
Ellinor, Patrick T.
Batra, Puneet
Ho, Jennifer E.
Philippakis, Anthony A.
Lubitz, Steven A.
author_facet Khurshid, Shaan
Friedman, Samuel Freesun
Pirruccello, James P.
Di Achille, Paolo
Diamant, Nathaniel
Anderson, Christopher D.
Ellinor, Patrick T.
Batra, Puneet
Ho, Jennifer E.
Philippakis, Anthony A.
Lubitz, Steven A.
author_sort Khurshid, Shaan
collection PubMed
description BACKGROUND: Cardiac magnetic resonance (CMR) is the gold standard for left ventricular hypertrophy (LVH) diagnosis. CMR-derived LV mass can be estimated using proprietary algorithms (eg, InlineVF), but their accuracy and availability may be limited. OBJECTIVE: To develop an open-source deep learning model to estimate CMR-derived LV mass. METHODS: Within participants of the UK Biobank prospective cohort undergoing CMR, we trained 2 convolutional neural networks to estimate LV mass. The first (ML4H(reg)) performed regression informed by manually labeled LV mass (available in 5065 individuals), while the second (ML4H(seg)) performed LV segmentation informed by InlineVF (version D13A) contours. We compared ML4H(reg), ML4H(seg), and InlineVF against manually labeled LV mass within an independent holdout set using Pearson correlation and mean absolute error (MAE). We assessed associations between CMR-derived LVH and prevalent cardiovascular disease using logistic regression adjusted for age and sex. RESULTS: We generated CMR-derived LV mass estimates within 38,574 individuals. Among 891 individuals in the holdout set, ML4H(seg) reproduced manually labeled LV mass more accurately (r = 0.864, 95% confidence interval [CI] 0.847–0.880; MAE 10.41 g, 95% CI 9.82–10.99) than ML4H(reg) (r = 0.843, 95% CI 0.823–0.861; MAE 10.51, 95% CI 9.86–11.15, P = .01) and InlineVF (r = 0.795, 95% CI 0.770–0.818; MAE 14.30, 95% CI 13.46–11.01, P < .01). LVH defined using ML4H(seg) demonstrated the strongest associations with hypertension (odds ratio 2.76, 95% CI 2.51–3.04), atrial fibrillation (1.75, 95% CI 1.37–2.20), and heart failure (4.67, 95% CI 3.28–6.49). CONCLUSIONS: ML4H(seg) is an open-source deep learning model providing automated quantification of CMR-derived LV mass. Deep learning models characterizing cardiac structure may facilitate broad cardiovascular discovery.
format Online
Article
Text
id pubmed-8890333
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-88903332022-03-08 Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass Khurshid, Shaan Friedman, Samuel Freesun Pirruccello, James P. Di Achille, Paolo Diamant, Nathaniel Anderson, Christopher D. Ellinor, Patrick T. Batra, Puneet Ho, Jennifer E. Philippakis, Anthony A. Lubitz, Steven A. Cardiovasc Digit Health J Clinical BACKGROUND: Cardiac magnetic resonance (CMR) is the gold standard for left ventricular hypertrophy (LVH) diagnosis. CMR-derived LV mass can be estimated using proprietary algorithms (eg, InlineVF), but their accuracy and availability may be limited. OBJECTIVE: To develop an open-source deep learning model to estimate CMR-derived LV mass. METHODS: Within participants of the UK Biobank prospective cohort undergoing CMR, we trained 2 convolutional neural networks to estimate LV mass. The first (ML4H(reg)) performed regression informed by manually labeled LV mass (available in 5065 individuals), while the second (ML4H(seg)) performed LV segmentation informed by InlineVF (version D13A) contours. We compared ML4H(reg), ML4H(seg), and InlineVF against manually labeled LV mass within an independent holdout set using Pearson correlation and mean absolute error (MAE). We assessed associations between CMR-derived LVH and prevalent cardiovascular disease using logistic regression adjusted for age and sex. RESULTS: We generated CMR-derived LV mass estimates within 38,574 individuals. Among 891 individuals in the holdout set, ML4H(seg) reproduced manually labeled LV mass more accurately (r = 0.864, 95% confidence interval [CI] 0.847–0.880; MAE 10.41 g, 95% CI 9.82–10.99) than ML4H(reg) (r = 0.843, 95% CI 0.823–0.861; MAE 10.51, 95% CI 9.86–11.15, P = .01) and InlineVF (r = 0.795, 95% CI 0.770–0.818; MAE 14.30, 95% CI 13.46–11.01, P < .01). LVH defined using ML4H(seg) demonstrated the strongest associations with hypertension (odds ratio 2.76, 95% CI 2.51–3.04), atrial fibrillation (1.75, 95% CI 1.37–2.20), and heart failure (4.67, 95% CI 3.28–6.49). CONCLUSIONS: ML4H(seg) is an open-source deep learning model providing automated quantification of CMR-derived LV mass. Deep learning models characterizing cardiac structure may facilitate broad cardiovascular discovery. Elsevier 2021-03-17 /pmc/articles/PMC8890333/ /pubmed/35265898 http://dx.doi.org/10.1016/j.cvdhj.2021.03.001 Text en © 2021 Heart Rhythm Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Clinical
Khurshid, Shaan
Friedman, Samuel Freesun
Pirruccello, James P.
Di Achille, Paolo
Diamant, Nathaniel
Anderson, Christopher D.
Ellinor, Patrick T.
Batra, Puneet
Ho, Jennifer E.
Philippakis, Anthony A.
Lubitz, Steven A.
Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass
title Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass
title_full Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass
title_fullStr Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass
title_full_unstemmed Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass
title_short Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass
title_sort deep learning to estimate cardiac magnetic resonance–derived left ventricular mass
topic Clinical
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890333/
https://www.ncbi.nlm.nih.gov/pubmed/35265898
http://dx.doi.org/10.1016/j.cvdhj.2021.03.001
work_keys_str_mv AT khurshidshaan deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass
AT friedmansamuelfreesun deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass
AT pirruccellojamesp deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass
AT diachillepaolo deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass
AT diamantnathaniel deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass
AT andersonchristopherd deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass
AT ellinorpatrickt deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass
AT batrapuneet deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass
AT hojennifere deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass
AT philippakisanthonya deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass
AT lubitzstevena deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass