Cargando…
Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass
BACKGROUND: Cardiac magnetic resonance (CMR) is the gold standard for left ventricular hypertrophy (LVH) diagnosis. CMR-derived LV mass can be estimated using proprietary algorithms (eg, InlineVF), but their accuracy and availability may be limited. OBJECTIVE: To develop an open-source deep learning...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890333/ https://www.ncbi.nlm.nih.gov/pubmed/35265898 http://dx.doi.org/10.1016/j.cvdhj.2021.03.001 |
_version_ | 1784661611591499776 |
---|---|
author | Khurshid, Shaan Friedman, Samuel Freesun Pirruccello, James P. Di Achille, Paolo Diamant, Nathaniel Anderson, Christopher D. Ellinor, Patrick T. Batra, Puneet Ho, Jennifer E. Philippakis, Anthony A. Lubitz, Steven A. |
author_facet | Khurshid, Shaan Friedman, Samuel Freesun Pirruccello, James P. Di Achille, Paolo Diamant, Nathaniel Anderson, Christopher D. Ellinor, Patrick T. Batra, Puneet Ho, Jennifer E. Philippakis, Anthony A. Lubitz, Steven A. |
author_sort | Khurshid, Shaan |
collection | PubMed |
description | BACKGROUND: Cardiac magnetic resonance (CMR) is the gold standard for left ventricular hypertrophy (LVH) diagnosis. CMR-derived LV mass can be estimated using proprietary algorithms (eg, InlineVF), but their accuracy and availability may be limited. OBJECTIVE: To develop an open-source deep learning model to estimate CMR-derived LV mass. METHODS: Within participants of the UK Biobank prospective cohort undergoing CMR, we trained 2 convolutional neural networks to estimate LV mass. The first (ML4H(reg)) performed regression informed by manually labeled LV mass (available in 5065 individuals), while the second (ML4H(seg)) performed LV segmentation informed by InlineVF (version D13A) contours. We compared ML4H(reg), ML4H(seg), and InlineVF against manually labeled LV mass within an independent holdout set using Pearson correlation and mean absolute error (MAE). We assessed associations between CMR-derived LVH and prevalent cardiovascular disease using logistic regression adjusted for age and sex. RESULTS: We generated CMR-derived LV mass estimates within 38,574 individuals. Among 891 individuals in the holdout set, ML4H(seg) reproduced manually labeled LV mass more accurately (r = 0.864, 95% confidence interval [CI] 0.847–0.880; MAE 10.41 g, 95% CI 9.82–10.99) than ML4H(reg) (r = 0.843, 95% CI 0.823–0.861; MAE 10.51, 95% CI 9.86–11.15, P = .01) and InlineVF (r = 0.795, 95% CI 0.770–0.818; MAE 14.30, 95% CI 13.46–11.01, P < .01). LVH defined using ML4H(seg) demonstrated the strongest associations with hypertension (odds ratio 2.76, 95% CI 2.51–3.04), atrial fibrillation (1.75, 95% CI 1.37–2.20), and heart failure (4.67, 95% CI 3.28–6.49). CONCLUSIONS: ML4H(seg) is an open-source deep learning model providing automated quantification of CMR-derived LV mass. Deep learning models characterizing cardiac structure may facilitate broad cardiovascular discovery. |
format | Online Article Text |
id | pubmed-8890333 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-88903332022-03-08 Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass Khurshid, Shaan Friedman, Samuel Freesun Pirruccello, James P. Di Achille, Paolo Diamant, Nathaniel Anderson, Christopher D. Ellinor, Patrick T. Batra, Puneet Ho, Jennifer E. Philippakis, Anthony A. Lubitz, Steven A. Cardiovasc Digit Health J Clinical BACKGROUND: Cardiac magnetic resonance (CMR) is the gold standard for left ventricular hypertrophy (LVH) diagnosis. CMR-derived LV mass can be estimated using proprietary algorithms (eg, InlineVF), but their accuracy and availability may be limited. OBJECTIVE: To develop an open-source deep learning model to estimate CMR-derived LV mass. METHODS: Within participants of the UK Biobank prospective cohort undergoing CMR, we trained 2 convolutional neural networks to estimate LV mass. The first (ML4H(reg)) performed regression informed by manually labeled LV mass (available in 5065 individuals), while the second (ML4H(seg)) performed LV segmentation informed by InlineVF (version D13A) contours. We compared ML4H(reg), ML4H(seg), and InlineVF against manually labeled LV mass within an independent holdout set using Pearson correlation and mean absolute error (MAE). We assessed associations between CMR-derived LVH and prevalent cardiovascular disease using logistic regression adjusted for age and sex. RESULTS: We generated CMR-derived LV mass estimates within 38,574 individuals. Among 891 individuals in the holdout set, ML4H(seg) reproduced manually labeled LV mass more accurately (r = 0.864, 95% confidence interval [CI] 0.847–0.880; MAE 10.41 g, 95% CI 9.82–10.99) than ML4H(reg) (r = 0.843, 95% CI 0.823–0.861; MAE 10.51, 95% CI 9.86–11.15, P = .01) and InlineVF (r = 0.795, 95% CI 0.770–0.818; MAE 14.30, 95% CI 13.46–11.01, P < .01). LVH defined using ML4H(seg) demonstrated the strongest associations with hypertension (odds ratio 2.76, 95% CI 2.51–3.04), atrial fibrillation (1.75, 95% CI 1.37–2.20), and heart failure (4.67, 95% CI 3.28–6.49). CONCLUSIONS: ML4H(seg) is an open-source deep learning model providing automated quantification of CMR-derived LV mass. Deep learning models characterizing cardiac structure may facilitate broad cardiovascular discovery. Elsevier 2021-03-17 /pmc/articles/PMC8890333/ /pubmed/35265898 http://dx.doi.org/10.1016/j.cvdhj.2021.03.001 Text en © 2021 Heart Rhythm Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Clinical Khurshid, Shaan Friedman, Samuel Freesun Pirruccello, James P. Di Achille, Paolo Diamant, Nathaniel Anderson, Christopher D. Ellinor, Patrick T. Batra, Puneet Ho, Jennifer E. Philippakis, Anthony A. Lubitz, Steven A. Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass |
title | Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass |
title_full | Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass |
title_fullStr | Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass |
title_full_unstemmed | Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass |
title_short | Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass |
title_sort | deep learning to estimate cardiac magnetic resonance–derived left ventricular mass |
topic | Clinical |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890333/ https://www.ncbi.nlm.nih.gov/pubmed/35265898 http://dx.doi.org/10.1016/j.cvdhj.2021.03.001 |
work_keys_str_mv | AT khurshidshaan deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass AT friedmansamuelfreesun deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass AT pirruccellojamesp deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass AT diachillepaolo deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass AT diamantnathaniel deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass AT andersonchristopherd deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass AT ellinorpatrickt deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass AT batrapuneet deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass AT hojennifere deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass AT philippakisanthonya deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass AT lubitzstevena deeplearningtoestimatecardiacmagneticresonancederivedleftventricularmass |