Cargando…
Performance of an automated photoplethysmography-based artificial intelligence algorithm to detect atrial fibrillation
Autores principales: | Mol, Daniel, Riezebos, Robert K., Marquering, Henk A., Werner, Marije E., Lobban, Trudie C.A., de Jong, Jonas S.S.G., de Groot, Joris R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890349/ https://www.ncbi.nlm.nih.gov/pubmed/35265881 http://dx.doi.org/10.1016/j.cvdhj.2020.08.004 |
Ejemplares similares
-
Opportunistic screening for atrial fibrillation using a photoplethysmography technique in geriatric patients, a preliminary analysis of the Dutch-GERAF Study
por: Zwart, L A R, et al.
Publicado: (2023) -
Evaluation of Atrial Fibrillation Detection in Short-Term Photoplethysmography (PPG) Signals Using Artificial Intelligence
por: Talukdar, Debjyoti, et al.
Publicado: (2023) -
Photoplethysmography based atrial fibrillation detection: a review
por: Pereira, Tania, et al.
Publicado: (2020) -
Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques
por: Baalman, Sarah W. E., et al.
Publicado: (2021) -
Beat-to-beat finger photoplethysmography in atrial fibrillation patients undergoing electrical cardioversion
por: Saglietto, Andrea, et al.
Publicado: (2023)