Cargando…
Significant role of spin-triplet state for exciton dissociation in organic solids
Clarification of the role of the spin state that initiates exciton dissociation is critical to attaining a fundamental understanding of the mechanism of organic photovoltaics. Although an excited spin-triplet state with an energy lower than that of excited spin-singlet state is disadvantageous in ex...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890716/ https://www.ncbi.nlm.nih.gov/pubmed/35235344 http://dx.doi.org/10.1126/sciadv.abj9188 |
Sumario: | Clarification of the role of the spin state that initiates exciton dissociation is critical to attaining a fundamental understanding of the mechanism of organic photovoltaics. Although an excited spin-triplet state with an energy lower than that of excited spin-singlet state is disadvantageous in exciton dissociation, a small electron exchange integral results in small singlet-triplet energy splitting in some material systems. This energy splitting leads to a nearly isoenergetic alignment of both excited states, raising a question about the role of excited spin states in exciton dissociation. Herein, we show that the spin-triplet rather than the spin-singlet plays a critical role in the exciton dissociation that leads to the formation of free carriers. This result indicates that the spin-triplet inherently acts as an intermediate, leading to exciton dissociation. Thus, our demonstration provides a fundamental understanding of the role of excited spin states of organic molecular systems in photoinduced charge-carrier generation. |
---|