Cargando…
Regulatory network-based imputation of dropouts in single-cell RNA sequencing data
Single-cell RNA sequencing (scRNA-seq) methods are typically unable to quantify the expression levels of all genes in a cell, creating a need for the computational prediction of missing values (‘dropout imputation’). Most existing dropout imputation methods are limited in the sense that they exclusi...
Autores principales: | Leote, Ana Carolina, Wu, Xiaohui, Beyer, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890719/ https://www.ncbi.nlm.nih.gov/pubmed/35176023 http://dx.doi.org/10.1371/journal.pcbi.1009849 |
Ejemplares similares
-
DrImpute: imputing dropout events in single cell RNA sequencing data
por: Gong, Wuming, et al.
Publicado: (2018) -
RESCUE: imputing dropout events in single-cell RNA-sequencing data
por: Tracy, Sam, et al.
Publicado: (2019) -
ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data
por: Malec, Marcin, et al.
Publicado: (2022) -
Impute the missing data using retrieved dropouts
por: Wang, Shuai, et al.
Publicado: (2022) -
Imputing single-cell RNA-seq data by considering cell heterogeneity and prior expression of dropouts
por: Zhang, Lihua, et al.
Publicado: (2020)