Cargando…

Improvement of the Accuracy in the Identification of Coronary Artery Disease Combining Heart Sound Features

Most researchers use features of diastolic murmurs to identify coronary artery disease. However, the diastolic murmurs of coronary artery disease are usually very weak and are easily contaminated by noise and valvular murmurs. Therefore, the diagnostic accuracy of coronary artery disease when only u...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Haixia, Zhang, Guojun, Shao, Guicheng, Wang, Aizhen, Gu, Yarong, Tian, Zhumei, Zhang, Qiong, Shi, Pengcheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890861/
https://www.ncbi.nlm.nih.gov/pubmed/35252442
http://dx.doi.org/10.1155/2022/3058835
Descripción
Sumario:Most researchers use features of diastolic murmurs to identify coronary artery disease. However, the diastolic murmurs of coronary artery disease are usually very weak and are easily contaminated by noise and valvular murmurs. Therefore, the diagnostic accuracy of coronary artery disease when only using diastolic murmurs is not well. An algorithm for improving the accuracy in the identification of coronary artery disease by combining the features of the first heart sound and diastolic murmurs was proposed. Firstly, a first heart sound feature extraction algorithm was used to identify coronary artery disease from noncoronary artery disease. Secondly, the Empirical Wavelet Transform algorithm was used to decompose the diastolic heart sound into three modes, and the spectral energy of each mode was calculated to distinguish coronary artery disease from noncoronary artery disease. Then, the features of the fist heart sound, the second diastolic spectral energy, and the parameter P3, which was used to discriminate the diastolic murmurs in coronary artery disease and in valvular disease, were combined together to improve the diagnostic accuracy of coronary artery disease. The comparison experiment results show that the accuracy of the proposed algorithm is superior to some state-of-the-art methods when they are used to diagnose coronary artery disease.