Cargando…
TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A
Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia(1–3), two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-43(4,5). Here we show that TDP-43 depletion induces robust i...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891020/ https://www.ncbi.nlm.nih.gov/pubmed/35197628 http://dx.doi.org/10.1038/s41586-022-04436-3 |
Sumario: | Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia(1–3), two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-43(4,5). Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites. These polymorphisms potentiate cryptic exon inclusion, both in cultured cells and in brains and spinal cords from patients with these conditions. Our findings, which demonstrate a genetic link between loss of nuclear TDP-43 function and disease, reveal the mechanism by which UNC13A variants exacerbate the effects of decreased TDP-43 function. They further provide a promising therapeutic target for TDP-43 proteinopathies. |
---|