Cargando…
SynthMorph: Learning Contrast-Invariant Registration Without Acquired Images
We introduce a strategy for learning image registration without acquired imaging data, producing powerful networks agnostic to contrast introduced by magnetic resonance imaging (MRI). While classical registration methods accurately estimate the spatial correspondence between images, they solve an op...
Autores principales: | Hoffmann, Malte, Billot, Benjamin, Greve, Douglas N., Iglesias, Juan Eugenio, Fischl, Bruce, Dalca, Adrian V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891043/ https://www.ncbi.nlm.nih.gov/pubmed/34587005 http://dx.doi.org/10.1109/TMI.2021.3116879 |
Ejemplares similares
-
SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining
por: Billot, Benjamin, et al.
Publicado: (2023) -
Learning the Effect of Registration Hyperparameters with HyperMorph
por: Hoopes, Andrew, et al.
Publicado: (2022) -
SynthStrip: skull-stripping for any brain image
por: Hoopes, Andrew, et al.
Publicado: (2022) -
A deep learning toolbox for automatic segmentation of subcortical limbic structures from MRI images
por: Greve, Douglas N., et al.
Publicado: (2021) -
Cortical surface registration using unsupervised learning
por: Cheng, Jieyu, et al.
Publicado: (2020)