Cargando…
Are Machine Learning Algorithms More Accurate in Predicting Vegetable and Fruit Consumption Than Traditional Statistical Models? An Exploratory Analysis
Machine learning (ML) algorithms may help better understand the complex interactions among factors that influence dietary choices and behaviors. The aim of this study was to explore whether ML algorithms are more accurate than traditional statistical models in predicting vegetable and fruit (VF) con...
Autores principales: | Côté, Mélina, Osseni, Mazid Abiodoun, Brassard, Didier, Carbonneau, Élise, Robitaille, Julie, Vohl, Marie-Claude, Lemieux, Simone, Laviolette, François, Lamarche, Benoît |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891134/ https://www.ncbi.nlm.nih.gov/pubmed/35252288 http://dx.doi.org/10.3389/fnut.2022.740898 |
Ejemplares similares
-
Predicting Adherence to Canada's Food Guide Recommendations on Healthy Food Choices Using Machine Learning Algorithms
por: Côté, Mélina, et al.
Publicado: (2022) -
On the robustness of generalization of drug–drug interaction models
por: Kpanou, Rogia, et al.
Publicado: (2021) -
Consumption of low nutritive value foods and cardiometabolic risk factors among French-speaking adults from Quebec, Canada: the PREDISE study
por: Brassard, Didier, et al.
Publicado: (2019) -
Differences in Population-Based Dietary Intake Estimates Obtained From an Interviewer-Administered and a Self-Administered Web-Based 24-h Recall
por: Brassard, Didier, et al.
Publicado: (2020) -
Development and Validation of the Food Liking Questionnaire in a French-Canadian Population
por: Carbonneau, Elise, et al.
Publicado: (2017)