Cargando…
A deep learning model for molecular label transfer that enables cancer cell identification from histopathology images
Deep-learning classification systems have the potential to improve cancer diagnosis. However, development of these computational approaches so far depends on prior pathological annotations and large training datasets. The manual annotation is low-resolution, time-consuming, highly variable and subje...
Autores principales: | Su, Andrew, Lee, HoJoon, Tan, Xiao, Suarez, Carlos J., Andor, Noemi, Nguyen, Quan, Ji, Hanlee P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891271/ https://www.ncbi.nlm.nih.gov/pubmed/35236916 http://dx.doi.org/10.1038/s41698-022-00252-0 |
Ejemplares similares
-
Systematic genomic identification of colorectal cancer genes delineating advanced from early clinical stage and metastasis
por: Lee, HoJoon, et al.
Publicado: (2013) -
CRISPR–Cas9-targeted fragmentation and selective sequencing enable massively parallel microsatellite analysis
por: Shin, GiWon, et al.
Publicado: (2017) -
SVEngine: an efficient and versatile simulator of genome structural variations with features of cancer clonal evolution
por: Xia, Li Charlie, et al.
Publicado: (2018) -
The Cancer Genome Atlas Clinical Explorer: a web and mobile interface for identifying clinical–genomic driver associations
por: Lee, HoJoon, et al.
Publicado: (2015) -
CRISPRpic: fast and precise analysis for CRISPR-induced mutations via prefixed index counting
por: Lee, HoJoon, et al.
Publicado: (2020)