Cargando…
Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey
Zhejiang Suichang native honey, which is included in the list of China’s National Geographical Indication Agricultural Products Protection Project, is very popular. This study proposes a method of Raman spectroscopy combined with machine learning algorithms to accurately detect low-concentration adu...
Autores principales: | Hu, Shuhan, Li, Hongyi, Chen, Chen, Chen, Cheng, Zhao, Deyi, Dong, Bingyu, Lv, Xiaoyi, Zhang, Kai, Xie, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891316/ https://www.ncbi.nlm.nih.gov/pubmed/35236873 http://dx.doi.org/10.1038/s41598-022-07222-3 |
Ejemplares similares
-
Rapid Identification of Rainbow Trout Adulteration in Atlantic Salmon by Raman Spectroscopy Combined with Machine Learning
por: Chen, Zeling, et al.
Publicado: (2019) -
Raman spectroscopy combined with a support vector machine algorithm as a diagnostic technique for primary Sjögren’s syndrome
por: Chen, Xiaomei, et al.
Publicado: (2023) -
Fast Quantification of Honey Adulteration with Laser-Induced Breakdown Spectroscopy and Chemometric Methods
por: Peng, Jiyu, et al.
Publicado: (2020) -
Identifying type of sugar adulterants in honey: Combined application of NMR spectroscopy and supervised machine learning classification
por: Rachineni, Kavitha, et al.
Publicado: (2022) -
Ultraviolet–visible spectroscopy combined with machine learning as a rapid detection method to the predict adulteration of honey
por: Razavi, Razie, et al.
Publicado: (2023)