Cargando…
Synthesis, and docking studies of novel heterocycles incorporating the indazolylthiazole moiety as antimicrobial and anticancer agents
The current study was directed toward developing a new series of fused heterocycles incorporating indazolylthiazole moiety. The newly synthesized compounds were characterized through elemental analysis and spectral data (IR, 1H-NMR, 13C-NMR, and Mass Spectrometry). The cytotoxic effect of the newly...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891364/ https://www.ncbi.nlm.nih.gov/pubmed/35236889 http://dx.doi.org/10.1038/s41598-022-07456-1 |
Sumario: | The current study was directed toward developing a new series of fused heterocycles incorporating indazolylthiazole moiety. The newly synthesized compounds were characterized through elemental analysis and spectral data (IR, 1H-NMR, 13C-NMR, and Mass Spectrometry). The cytotoxic effect of the newly synthesized compounds was evaluated against normal human cells (HFB-4) and cancer cell lines (HepG-2 and Caco-2). Among the synthesized compounds, derivatives 4, and 6 revealed a significant selective antitumor activity, in a dose-dependent manner, against both HepG-2 and Caco-2 cell lines, with lower risk toward HFB-4 cells (normal cells). Derivative 8 revealed the maximum antitumor activity toward both tumor cell lines, with an SI value of about 26 and IC50 value of about 5.9 μg/mL. The effect of these derivatives (8, 4, and 6) upon the expression of 5 tumor regulating genes was studied through quantitative real-time PCR, where its interaction with these genes was simulated through the molecular docking study. Furthermore, the antimicrobial activity results revealed that compounds 2, 7, 8, and 9 have a potential antimicrobial activity, with maximum broad-spectrum activity through compound 3 against the three tested pathogens: Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans. The newly prepared compounds also revealed anti-biofilm formation activity with maximum activity against Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans, respectively. |
---|