Cargando…
Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study
Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold p...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891385/ https://www.ncbi.nlm.nih.gov/pubmed/35236896 http://dx.doi.org/10.1038/s41598-022-07314-0 |
_version_ | 1784661866283270144 |
---|---|
author | Mason, Ashley E. Hecht, Frederick M. Davis, Shakti K. Natale, Joseph L. Hartogensis, Wendy Damaso, Natalie Claypool, Kajal T. Dilchert, Stephan Dasgupta, Subhasis Purawat, Shweta Viswanath, Varun K. Klein, Amit Chowdhary, Anoushka Fisher, Sarah M. Anglo, Claudine Puldon, Karena Y. Veasna, Danou Prather, Jenifer G. Pandya, Leena S. Fox, Lindsey M. Busch, Michael Giordano, Casey Mercado, Brittany K. Song, Jining Jaimes, Rafael Baum, Brian S. Telfer, Brian A. Philipson, Casandra W. Collins, Paula P. Rao, Adam A. Wang, Edward J. Bandi, Rachel H. Choe, Bianca J. Epel, Elissa S. Epstein, Stephen K. Krasnoff, Joanne B. Lee, Marco B. Lee, Shi-Wen Lopez, Gina M. Mehta, Arpan Melville, Laura D. Moon, Tiffany S. Mujica-Parodi, Lilianne R. Noel, Kimberly M. Orosco, Michael A. Rideout, Jesse M. Robishaw, Janet D. Rodriguez, Robert M. Shah, Kaushal H. Siegal, Jonathan H. Gupta, Amarnath Altintas, Ilkay Smarr, Benjamin L. |
author_facet | Mason, Ashley E. Hecht, Frederick M. Davis, Shakti K. Natale, Joseph L. Hartogensis, Wendy Damaso, Natalie Claypool, Kajal T. Dilchert, Stephan Dasgupta, Subhasis Purawat, Shweta Viswanath, Varun K. Klein, Amit Chowdhary, Anoushka Fisher, Sarah M. Anglo, Claudine Puldon, Karena Y. Veasna, Danou Prather, Jenifer G. Pandya, Leena S. Fox, Lindsey M. Busch, Michael Giordano, Casey Mercado, Brittany K. Song, Jining Jaimes, Rafael Baum, Brian S. Telfer, Brian A. Philipson, Casandra W. Collins, Paula P. Rao, Adam A. Wang, Edward J. Bandi, Rachel H. Choe, Bianca J. Epel, Elissa S. Epstein, Stephen K. Krasnoff, Joanne B. Lee, Marco B. Lee, Shi-Wen Lopez, Gina M. Mehta, Arpan Melville, Laura D. Moon, Tiffany S. Mujica-Parodi, Lilianne R. Noel, Kimberly M. Orosco, Michael A. Rideout, Jesse M. Robishaw, Janet D. Rodriguez, Robert M. Shah, Kaushal H. Siegal, Jonathan H. Gupta, Amarnath Altintas, Ilkay Smarr, Benjamin L. |
author_sort | Mason, Ashley E. |
collection | PubMed |
description | Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily questionnaire data and physiological data using a consumer wearable (Oura Ring) from 63,153 participants, of whom 704 self-reported possible COVID-19 disease. We selected 73 of these 704 participants with reliable confirmation of COVID-19 by PCR testing and high-quality physiological data for algorithm training to identify onset of COVID-19 using machine learning classification. The algorithm identified COVID-19 an average of 2.75 days before participants sought diagnostic testing with a sensitivity of 82% and specificity of 63%. The receiving operating characteristic (ROC) area under the curve (AUC) was 0.819 (95% CI [0.809, 0.830]). Including continuous temperature yielded an AUC 4.9% higher than without this feature. For further validation, we obtained SARS CoV-2 antibody in a subset of participants and identified 10 additional participants who self-reported COVID-19 disease with antibody confirmation. The algorithm had an overall ROC AUC of 0.819 (95% CI [0.809, 0.830]), with a sensitivity of 90% and specificity of 80% in these additional participants. Finally, we observed substantial variation in accuracy based on age and biological sex. Findings highlight the importance of including temperature assessment, using continuous physiological features for alignment, and including diverse populations in algorithm development to optimize accuracy in COVID-19 detection from wearables. |
format | Online Article Text |
id | pubmed-8891385 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-88913852022-03-07 Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study Mason, Ashley E. Hecht, Frederick M. Davis, Shakti K. Natale, Joseph L. Hartogensis, Wendy Damaso, Natalie Claypool, Kajal T. Dilchert, Stephan Dasgupta, Subhasis Purawat, Shweta Viswanath, Varun K. Klein, Amit Chowdhary, Anoushka Fisher, Sarah M. Anglo, Claudine Puldon, Karena Y. Veasna, Danou Prather, Jenifer G. Pandya, Leena S. Fox, Lindsey M. Busch, Michael Giordano, Casey Mercado, Brittany K. Song, Jining Jaimes, Rafael Baum, Brian S. Telfer, Brian A. Philipson, Casandra W. Collins, Paula P. Rao, Adam A. Wang, Edward J. Bandi, Rachel H. Choe, Bianca J. Epel, Elissa S. Epstein, Stephen K. Krasnoff, Joanne B. Lee, Marco B. Lee, Shi-Wen Lopez, Gina M. Mehta, Arpan Melville, Laura D. Moon, Tiffany S. Mujica-Parodi, Lilianne R. Noel, Kimberly M. Orosco, Michael A. Rideout, Jesse M. Robishaw, Janet D. Rodriguez, Robert M. Shah, Kaushal H. Siegal, Jonathan H. Gupta, Amarnath Altintas, Ilkay Smarr, Benjamin L. Sci Rep Article Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily questionnaire data and physiological data using a consumer wearable (Oura Ring) from 63,153 participants, of whom 704 self-reported possible COVID-19 disease. We selected 73 of these 704 participants with reliable confirmation of COVID-19 by PCR testing and high-quality physiological data for algorithm training to identify onset of COVID-19 using machine learning classification. The algorithm identified COVID-19 an average of 2.75 days before participants sought diagnostic testing with a sensitivity of 82% and specificity of 63%. The receiving operating characteristic (ROC) area under the curve (AUC) was 0.819 (95% CI [0.809, 0.830]). Including continuous temperature yielded an AUC 4.9% higher than without this feature. For further validation, we obtained SARS CoV-2 antibody in a subset of participants and identified 10 additional participants who self-reported COVID-19 disease with antibody confirmation. The algorithm had an overall ROC AUC of 0.819 (95% CI [0.809, 0.830]), with a sensitivity of 90% and specificity of 80% in these additional participants. Finally, we observed substantial variation in accuracy based on age and biological sex. Findings highlight the importance of including temperature assessment, using continuous physiological features for alignment, and including diverse populations in algorithm development to optimize accuracy in COVID-19 detection from wearables. Nature Publishing Group UK 2022-03-02 /pmc/articles/PMC8891385/ /pubmed/35236896 http://dx.doi.org/10.1038/s41598-022-07314-0 Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Mason, Ashley E. Hecht, Frederick M. Davis, Shakti K. Natale, Joseph L. Hartogensis, Wendy Damaso, Natalie Claypool, Kajal T. Dilchert, Stephan Dasgupta, Subhasis Purawat, Shweta Viswanath, Varun K. Klein, Amit Chowdhary, Anoushka Fisher, Sarah M. Anglo, Claudine Puldon, Karena Y. Veasna, Danou Prather, Jenifer G. Pandya, Leena S. Fox, Lindsey M. Busch, Michael Giordano, Casey Mercado, Brittany K. Song, Jining Jaimes, Rafael Baum, Brian S. Telfer, Brian A. Philipson, Casandra W. Collins, Paula P. Rao, Adam A. Wang, Edward J. Bandi, Rachel H. Choe, Bianca J. Epel, Elissa S. Epstein, Stephen K. Krasnoff, Joanne B. Lee, Marco B. Lee, Shi-Wen Lopez, Gina M. Mehta, Arpan Melville, Laura D. Moon, Tiffany S. Mujica-Parodi, Lilianne R. Noel, Kimberly M. Orosco, Michael A. Rideout, Jesse M. Robishaw, Janet D. Rodriguez, Robert M. Shah, Kaushal H. Siegal, Jonathan H. Gupta, Amarnath Altintas, Ilkay Smarr, Benjamin L. Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study |
title | Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study |
title_full | Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study |
title_fullStr | Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study |
title_full_unstemmed | Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study |
title_short | Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study |
title_sort | detection of covid-19 using multimodal data from a wearable device: results from the first tempredict study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891385/ https://www.ncbi.nlm.nih.gov/pubmed/35236896 http://dx.doi.org/10.1038/s41598-022-07314-0 |
work_keys_str_mv | AT masonashleye detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT hechtfrederickm detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT davisshaktik detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT natalejosephl detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT hartogensiswendy detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT damasonatalie detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT claypoolkajalt detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT dilchertstephan detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT dasguptasubhasis detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT purawatshweta detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT viswanathvarunk detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT kleinamit detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT chowdharyanoushka detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT fishersarahm detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT angloclaudine detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT puldonkarenay detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT veasnadanou detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT pratherjeniferg detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT pandyaleenas detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT foxlindseym detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT buschmichael detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT giordanocasey detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT mercadobrittanyk detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT songjining detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT jaimesrafael detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT baumbrians detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT telferbriana detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT philipsoncasandraw detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT collinspaulap detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT raoadama detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT wangedwardj detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT bandirachelh detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT choebiancaj detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT epelelissas detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT epsteinstephenk detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT krasnoffjoanneb detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT leemarcob detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT leeshiwen detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT lopezginam detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT mehtaarpan detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT melvillelaurad detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT moontiffanys detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT mujicaparodililianner detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT noelkimberlym detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT oroscomichaela detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT rideoutjessem detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT robishawjanetd detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT rodriguezrobertm detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT shahkaushalh detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT siegaljonathanh detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT guptaamarnath detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT altintasilkay detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy AT smarrbenjaminl detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy |