Cargando…

Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study

Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold p...

Descripción completa

Detalles Bibliográficos
Autores principales: Mason, Ashley E., Hecht, Frederick M., Davis, Shakti K., Natale, Joseph L., Hartogensis, Wendy, Damaso, Natalie, Claypool, Kajal T., Dilchert, Stephan, Dasgupta, Subhasis, Purawat, Shweta, Viswanath, Varun K., Klein, Amit, Chowdhary, Anoushka, Fisher, Sarah M., Anglo, Claudine, Puldon, Karena Y., Veasna, Danou, Prather, Jenifer G., Pandya, Leena S., Fox, Lindsey M., Busch, Michael, Giordano, Casey, Mercado, Brittany K., Song, Jining, Jaimes, Rafael, Baum, Brian S., Telfer, Brian A., Philipson, Casandra W., Collins, Paula P., Rao, Adam A., Wang, Edward J., Bandi, Rachel H., Choe, Bianca J., Epel, Elissa S., Epstein, Stephen K., Krasnoff, Joanne B., Lee, Marco B., Lee, Shi-Wen, Lopez, Gina M., Mehta, Arpan, Melville, Laura D., Moon, Tiffany S., Mujica-Parodi, Lilianne R., Noel, Kimberly M., Orosco, Michael A., Rideout, Jesse M., Robishaw, Janet D., Rodriguez, Robert M., Shah, Kaushal H., Siegal, Jonathan H., Gupta, Amarnath, Altintas, Ilkay, Smarr, Benjamin L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891385/
https://www.ncbi.nlm.nih.gov/pubmed/35236896
http://dx.doi.org/10.1038/s41598-022-07314-0
_version_ 1784661866283270144
author Mason, Ashley E.
Hecht, Frederick M.
Davis, Shakti K.
Natale, Joseph L.
Hartogensis, Wendy
Damaso, Natalie
Claypool, Kajal T.
Dilchert, Stephan
Dasgupta, Subhasis
Purawat, Shweta
Viswanath, Varun K.
Klein, Amit
Chowdhary, Anoushka
Fisher, Sarah M.
Anglo, Claudine
Puldon, Karena Y.
Veasna, Danou
Prather, Jenifer G.
Pandya, Leena S.
Fox, Lindsey M.
Busch, Michael
Giordano, Casey
Mercado, Brittany K.
Song, Jining
Jaimes, Rafael
Baum, Brian S.
Telfer, Brian A.
Philipson, Casandra W.
Collins, Paula P.
Rao, Adam A.
Wang, Edward J.
Bandi, Rachel H.
Choe, Bianca J.
Epel, Elissa S.
Epstein, Stephen K.
Krasnoff, Joanne B.
Lee, Marco B.
Lee, Shi-Wen
Lopez, Gina M.
Mehta, Arpan
Melville, Laura D.
Moon, Tiffany S.
Mujica-Parodi, Lilianne R.
Noel, Kimberly M.
Orosco, Michael A.
Rideout, Jesse M.
Robishaw, Janet D.
Rodriguez, Robert M.
Shah, Kaushal H.
Siegal, Jonathan H.
Gupta, Amarnath
Altintas, Ilkay
Smarr, Benjamin L.
author_facet Mason, Ashley E.
Hecht, Frederick M.
Davis, Shakti K.
Natale, Joseph L.
Hartogensis, Wendy
Damaso, Natalie
Claypool, Kajal T.
Dilchert, Stephan
Dasgupta, Subhasis
Purawat, Shweta
Viswanath, Varun K.
Klein, Amit
Chowdhary, Anoushka
Fisher, Sarah M.
Anglo, Claudine
Puldon, Karena Y.
Veasna, Danou
Prather, Jenifer G.
Pandya, Leena S.
Fox, Lindsey M.
Busch, Michael
Giordano, Casey
Mercado, Brittany K.
Song, Jining
Jaimes, Rafael
Baum, Brian S.
Telfer, Brian A.
Philipson, Casandra W.
Collins, Paula P.
Rao, Adam A.
Wang, Edward J.
Bandi, Rachel H.
Choe, Bianca J.
Epel, Elissa S.
Epstein, Stephen K.
Krasnoff, Joanne B.
Lee, Marco B.
Lee, Shi-Wen
Lopez, Gina M.
Mehta, Arpan
Melville, Laura D.
Moon, Tiffany S.
Mujica-Parodi, Lilianne R.
Noel, Kimberly M.
Orosco, Michael A.
Rideout, Jesse M.
Robishaw, Janet D.
Rodriguez, Robert M.
Shah, Kaushal H.
Siegal, Jonathan H.
Gupta, Amarnath
Altintas, Ilkay
Smarr, Benjamin L.
author_sort Mason, Ashley E.
collection PubMed
description Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily questionnaire data and physiological data using a consumer wearable (Oura Ring) from 63,153 participants, of whom 704 self-reported possible COVID-19 disease. We selected 73 of these 704 participants with reliable confirmation of COVID-19 by PCR testing and high-quality physiological data for algorithm training to identify onset of COVID-19 using machine learning classification. The algorithm identified COVID-19 an average of 2.75 days before participants sought diagnostic testing with a sensitivity of 82% and specificity of 63%. The receiving operating characteristic (ROC) area under the curve (AUC) was 0.819 (95% CI [0.809, 0.830]). Including continuous temperature yielded an AUC 4.9% higher than without this feature. For further validation, we obtained SARS CoV-2 antibody in a subset of participants and identified 10 additional participants who self-reported COVID-19 disease with antibody confirmation. The algorithm had an overall ROC AUC of 0.819 (95% CI [0.809, 0.830]), with a sensitivity of 90% and specificity of 80% in these additional participants. Finally, we observed substantial variation in accuracy based on age and biological sex. Findings highlight the importance of including temperature assessment, using continuous physiological features for alignment, and including diverse populations in algorithm development to optimize accuracy in COVID-19 detection from wearables.
format Online
Article
Text
id pubmed-8891385
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-88913852022-03-07 Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study Mason, Ashley E. Hecht, Frederick M. Davis, Shakti K. Natale, Joseph L. Hartogensis, Wendy Damaso, Natalie Claypool, Kajal T. Dilchert, Stephan Dasgupta, Subhasis Purawat, Shweta Viswanath, Varun K. Klein, Amit Chowdhary, Anoushka Fisher, Sarah M. Anglo, Claudine Puldon, Karena Y. Veasna, Danou Prather, Jenifer G. Pandya, Leena S. Fox, Lindsey M. Busch, Michael Giordano, Casey Mercado, Brittany K. Song, Jining Jaimes, Rafael Baum, Brian S. Telfer, Brian A. Philipson, Casandra W. Collins, Paula P. Rao, Adam A. Wang, Edward J. Bandi, Rachel H. Choe, Bianca J. Epel, Elissa S. Epstein, Stephen K. Krasnoff, Joanne B. Lee, Marco B. Lee, Shi-Wen Lopez, Gina M. Mehta, Arpan Melville, Laura D. Moon, Tiffany S. Mujica-Parodi, Lilianne R. Noel, Kimberly M. Orosco, Michael A. Rideout, Jesse M. Robishaw, Janet D. Rodriguez, Robert M. Shah, Kaushal H. Siegal, Jonathan H. Gupta, Amarnath Altintas, Ilkay Smarr, Benjamin L. Sci Rep Article Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily questionnaire data and physiological data using a consumer wearable (Oura Ring) from 63,153 participants, of whom 704 self-reported possible COVID-19 disease. We selected 73 of these 704 participants with reliable confirmation of COVID-19 by PCR testing and high-quality physiological data for algorithm training to identify onset of COVID-19 using machine learning classification. The algorithm identified COVID-19 an average of 2.75 days before participants sought diagnostic testing with a sensitivity of 82% and specificity of 63%. The receiving operating characteristic (ROC) area under the curve (AUC) was 0.819 (95% CI [0.809, 0.830]). Including continuous temperature yielded an AUC 4.9% higher than without this feature. For further validation, we obtained SARS CoV-2 antibody in a subset of participants and identified 10 additional participants who self-reported COVID-19 disease with antibody confirmation. The algorithm had an overall ROC AUC of 0.819 (95% CI [0.809, 0.830]), with a sensitivity of 90% and specificity of 80% in these additional participants. Finally, we observed substantial variation in accuracy based on age and biological sex. Findings highlight the importance of including temperature assessment, using continuous physiological features for alignment, and including diverse populations in algorithm development to optimize accuracy in COVID-19 detection from wearables. Nature Publishing Group UK 2022-03-02 /pmc/articles/PMC8891385/ /pubmed/35236896 http://dx.doi.org/10.1038/s41598-022-07314-0 Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Mason, Ashley E.
Hecht, Frederick M.
Davis, Shakti K.
Natale, Joseph L.
Hartogensis, Wendy
Damaso, Natalie
Claypool, Kajal T.
Dilchert, Stephan
Dasgupta, Subhasis
Purawat, Shweta
Viswanath, Varun K.
Klein, Amit
Chowdhary, Anoushka
Fisher, Sarah M.
Anglo, Claudine
Puldon, Karena Y.
Veasna, Danou
Prather, Jenifer G.
Pandya, Leena S.
Fox, Lindsey M.
Busch, Michael
Giordano, Casey
Mercado, Brittany K.
Song, Jining
Jaimes, Rafael
Baum, Brian S.
Telfer, Brian A.
Philipson, Casandra W.
Collins, Paula P.
Rao, Adam A.
Wang, Edward J.
Bandi, Rachel H.
Choe, Bianca J.
Epel, Elissa S.
Epstein, Stephen K.
Krasnoff, Joanne B.
Lee, Marco B.
Lee, Shi-Wen
Lopez, Gina M.
Mehta, Arpan
Melville, Laura D.
Moon, Tiffany S.
Mujica-Parodi, Lilianne R.
Noel, Kimberly M.
Orosco, Michael A.
Rideout, Jesse M.
Robishaw, Janet D.
Rodriguez, Robert M.
Shah, Kaushal H.
Siegal, Jonathan H.
Gupta, Amarnath
Altintas, Ilkay
Smarr, Benjamin L.
Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study
title Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study
title_full Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study
title_fullStr Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study
title_full_unstemmed Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study
title_short Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study
title_sort detection of covid-19 using multimodal data from a wearable device: results from the first tempredict study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891385/
https://www.ncbi.nlm.nih.gov/pubmed/35236896
http://dx.doi.org/10.1038/s41598-022-07314-0
work_keys_str_mv AT masonashleye detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT hechtfrederickm detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT davisshaktik detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT natalejosephl detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT hartogensiswendy detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT damasonatalie detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT claypoolkajalt detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT dilchertstephan detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT dasguptasubhasis detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT purawatshweta detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT viswanathvarunk detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT kleinamit detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT chowdharyanoushka detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT fishersarahm detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT angloclaudine detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT puldonkarenay detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT veasnadanou detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT pratherjeniferg detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT pandyaleenas detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT foxlindseym detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT buschmichael detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT giordanocasey detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT mercadobrittanyk detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT songjining detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT jaimesrafael detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT baumbrians detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT telferbriana detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT philipsoncasandraw detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT collinspaulap detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT raoadama detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT wangedwardj detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT bandirachelh detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT choebiancaj detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT epelelissas detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT epsteinstephenk detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT krasnoffjoanneb detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT leemarcob detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT leeshiwen detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT lopezginam detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT mehtaarpan detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT melvillelaurad detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT moontiffanys detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT mujicaparodililianner detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT noelkimberlym detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT oroscomichaela detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT rideoutjessem detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT robishawjanetd detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT rodriguezrobertm detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT shahkaushalh detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT siegaljonathanh detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT guptaamarnath detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT altintasilkay detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy
AT smarrbenjaminl detectionofcovid19usingmultimodaldatafromawearabledeviceresultsfromthefirsttempredictstudy