Cargando…

Probabilistic classification of anti‐SARS‐CoV‐2 antibody responses improves seroprevalence estimates

OBJECTIVES: Population‐level measures of seropositivity are critical for understanding the epidemiology of an emerging pathogen, yet most antibody tests apply a strict cutoff for seropositivity that is not learnt in a data‐driven manner, leading to uncertainty when classifying low‐titer responses. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Castro Dopico, Xaquin, Muschiol, Sandra, Grinberg, Nastasiya F, Aleman, Soo, Sheward, Daniel J, Hanke, Leo, Ahl, Marcus, Vikström, Linnea, Forsell, Mattias, Coquet, Jonathan M, McInerney, Gerald, Dillner, Joakim, Bogdanovic, Gordana, Murrell, Ben, Albert, Jan, Wallace, Chris, Karlsson Hedestam, Gunilla B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891432/
https://www.ncbi.nlm.nih.gov/pubmed/35284072
http://dx.doi.org/10.1002/cti2.1379
_version_ 1784661872844210176
author Castro Dopico, Xaquin
Muschiol, Sandra
Grinberg, Nastasiya F
Aleman, Soo
Sheward, Daniel J
Hanke, Leo
Ahl, Marcus
Vikström, Linnea
Forsell, Mattias
Coquet, Jonathan M
McInerney, Gerald
Dillner, Joakim
Bogdanovic, Gordana
Murrell, Ben
Albert, Jan
Wallace, Chris
Karlsson Hedestam, Gunilla B
author_facet Castro Dopico, Xaquin
Muschiol, Sandra
Grinberg, Nastasiya F
Aleman, Soo
Sheward, Daniel J
Hanke, Leo
Ahl, Marcus
Vikström, Linnea
Forsell, Mattias
Coquet, Jonathan M
McInerney, Gerald
Dillner, Joakim
Bogdanovic, Gordana
Murrell, Ben
Albert, Jan
Wallace, Chris
Karlsson Hedestam, Gunilla B
author_sort Castro Dopico, Xaquin
collection PubMed
description OBJECTIVES: Population‐level measures of seropositivity are critical for understanding the epidemiology of an emerging pathogen, yet most antibody tests apply a strict cutoff for seropositivity that is not learnt in a data‐driven manner, leading to uncertainty when classifying low‐titer responses. To improve upon this, we evaluated cutoff‐independent methods for their ability to assign likelihood of SARS‐CoV‐2 seropositivity to individual samples. METHODS: Using robust ELISAs based on SARS‐CoV‐2 spike (S) and the receptor‐binding domain (RBD), we profiled antibody responses in a group of SARS‐CoV‐2 PCR+ individuals (n = 138). Using these data, we trained probabilistic learners to assign likelihood of seropositivity to test samples of unknown serostatus (n = 5100), identifying a support vector machines‐linear discriminant analysis learner (SVM‐LDA) suited for this purpose. RESULTS: In the training data from confirmed ancestral SARS‐CoV‐2 infections, 99% of participants had detectable anti‐S and ‐RBD IgG in the circulation, with titers differing > 1000‐fold between persons. In data of otherwise healthy individuals, 7.2% (n = 367) of samples were of uncertain serostatus, with values in the range of 3‐6SD from the mean of pre‐pandemic negative controls (n = 595). In contrast, SVM‐LDA classified 6.4% (n = 328) of test samples as having a high likelihood (> 99% chance) of past infection, 4.5% (n = 230) to have a 50–99% likelihood, and 4.0% (n = 203) to have a 10–49% likelihood. As different probabilistic approaches were more consistent with each other than conventional SD‐based methods, such tools allow for more statistically‐sound seropositivity estimates in large cohorts. CONCLUSION: Probabilistic antibody testing frameworks can improve seropositivity estimates in populations with large titer variability.
format Online
Article
Text
id pubmed-8891432
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-88914322022-03-10 Probabilistic classification of anti‐SARS‐CoV‐2 antibody responses improves seroprevalence estimates Castro Dopico, Xaquin Muschiol, Sandra Grinberg, Nastasiya F Aleman, Soo Sheward, Daniel J Hanke, Leo Ahl, Marcus Vikström, Linnea Forsell, Mattias Coquet, Jonathan M McInerney, Gerald Dillner, Joakim Bogdanovic, Gordana Murrell, Ben Albert, Jan Wallace, Chris Karlsson Hedestam, Gunilla B Clin Transl Immunology Original Article OBJECTIVES: Population‐level measures of seropositivity are critical for understanding the epidemiology of an emerging pathogen, yet most antibody tests apply a strict cutoff for seropositivity that is not learnt in a data‐driven manner, leading to uncertainty when classifying low‐titer responses. To improve upon this, we evaluated cutoff‐independent methods for their ability to assign likelihood of SARS‐CoV‐2 seropositivity to individual samples. METHODS: Using robust ELISAs based on SARS‐CoV‐2 spike (S) and the receptor‐binding domain (RBD), we profiled antibody responses in a group of SARS‐CoV‐2 PCR+ individuals (n = 138). Using these data, we trained probabilistic learners to assign likelihood of seropositivity to test samples of unknown serostatus (n = 5100), identifying a support vector machines‐linear discriminant analysis learner (SVM‐LDA) suited for this purpose. RESULTS: In the training data from confirmed ancestral SARS‐CoV‐2 infections, 99% of participants had detectable anti‐S and ‐RBD IgG in the circulation, with titers differing > 1000‐fold between persons. In data of otherwise healthy individuals, 7.2% (n = 367) of samples were of uncertain serostatus, with values in the range of 3‐6SD from the mean of pre‐pandemic negative controls (n = 595). In contrast, SVM‐LDA classified 6.4% (n = 328) of test samples as having a high likelihood (> 99% chance) of past infection, 4.5% (n = 230) to have a 50–99% likelihood, and 4.0% (n = 203) to have a 10–49% likelihood. As different probabilistic approaches were more consistent with each other than conventional SD‐based methods, such tools allow for more statistically‐sound seropositivity estimates in large cohorts. CONCLUSION: Probabilistic antibody testing frameworks can improve seropositivity estimates in populations with large titer variability. John Wiley and Sons Inc. 2022-03-02 /pmc/articles/PMC8891432/ /pubmed/35284072 http://dx.doi.org/10.1002/cti2.1379 Text en © 2022 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Castro Dopico, Xaquin
Muschiol, Sandra
Grinberg, Nastasiya F
Aleman, Soo
Sheward, Daniel J
Hanke, Leo
Ahl, Marcus
Vikström, Linnea
Forsell, Mattias
Coquet, Jonathan M
McInerney, Gerald
Dillner, Joakim
Bogdanovic, Gordana
Murrell, Ben
Albert, Jan
Wallace, Chris
Karlsson Hedestam, Gunilla B
Probabilistic classification of anti‐SARS‐CoV‐2 antibody responses improves seroprevalence estimates
title Probabilistic classification of anti‐SARS‐CoV‐2 antibody responses improves seroprevalence estimates
title_full Probabilistic classification of anti‐SARS‐CoV‐2 antibody responses improves seroprevalence estimates
title_fullStr Probabilistic classification of anti‐SARS‐CoV‐2 antibody responses improves seroprevalence estimates
title_full_unstemmed Probabilistic classification of anti‐SARS‐CoV‐2 antibody responses improves seroprevalence estimates
title_short Probabilistic classification of anti‐SARS‐CoV‐2 antibody responses improves seroprevalence estimates
title_sort probabilistic classification of anti‐sars‐cov‐2 antibody responses improves seroprevalence estimates
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891432/
https://www.ncbi.nlm.nih.gov/pubmed/35284072
http://dx.doi.org/10.1002/cti2.1379
work_keys_str_mv AT castrodopicoxaquin probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT muschiolsandra probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT grinbergnastasiyaf probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT alemansoo probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT shewarddanielj probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT hankeleo probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT ahlmarcus probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT vikstromlinnea probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT forsellmattias probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT coquetjonathanm probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT mcinerneygerald probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT dillnerjoakim probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT bogdanovicgordana probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT murrellben probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT albertjan probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT wallacechris probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates
AT karlssonhedestamgunillab probabilisticclassificationofantisarscov2antibodyresponsesimprovesseroprevalenceestimates