Cargando…
Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential
The high-throughput extraction of quantitative imaging features from medical images for the purpose of radiomic analysis, i.e., radiomics in a broad sense, is a rapidly developing and emerging research field that has been attracting increasing interest, particularly in multimodality and multi-omics...
Autores principales: | Zhang, Xingping, Zhang, Yanchun, Zhang, Guijuan, Qiu, Xingting, Tan, Wenjun, Yin, Xiaoxia, Liao, Liefa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891653/ https://www.ncbi.nlm.nih.gov/pubmed/35251962 http://dx.doi.org/10.3389/fonc.2022.773840 |
Ejemplares similares
-
Diagnosis of architectural distortion on digital breast tomosynthesis using radiomics and deep learning
por: Chen, Xiao, et al.
Publicado: (2022) -
Radiomics for Diagnosis and Radiotherapy of Nasopharyngeal Carcinoma
por: Zhang, Yu-mei, et al.
Publicado: (2022) -
Successful neoadjuvant treatment of EGFR exon 19 deletion combined with TP53 mutation in non-small cell lung cancer using aumolertinib after osimertinib-induced myocardial damage: a case report and literature review
por: Zhang, Guijuan, et al.
Publicado: (2023) -
BI-RADS Reading of Non-Mass Lesions on DCE-MRI and Differential Diagnosis Performed by Radiomics and Deep Learning
por: Zhou, Jiejie, et al.
Publicado: (2021) -
Deep Learning Radiomics to Predict Regional Lymph Node Staging for Hilar Cholangiocarcinoma
por: Wang, Yubizhuo, et al.
Publicado: (2021)