Cargando…
Profiling temporal learning interests with time-aware transformers and knowledge graph for online course recommendation
Profiling users’ temporal learning interests is key to online course recommendation. Previous studies mainly profile users’ learning interests by aggregating their historical behaviors with simple fusing strategies, which fails to capture their temporal interest patterns underlying the sequential us...
Autores principales: | Zhou, Jilei, Jiang, Guanran, Du, Wei, Han, Cong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891746/ http://dx.doi.org/10.1007/s10660-022-09541-z |
Ejemplares similares
-
Health-Aware Food Recommendation Based on Knowledge Graph and Multi-Task Learning
por: Chen, Yi, et al.
Publicado: (2023) -
Personalized Course Recommendation System Fusing with Knowledge Graph and Collaborative Filtering
por: Xu, Gongwen, et al.
Publicado: (2021) -
Iterative heterogeneous graph learning for knowledge graph-based recommendation
por: Liu, Tieyuan, et al.
Publicado: (2023) -
SAShA: Semantic-Aware Shilling Attacks on Recommender Systems Exploiting Knowledge Graphs
por: Anelli, Vito Walter, et al.
Publicado: (2020) -
Effective Graph Mining for Educational Data Mining and Interest Recommendation
por: Xu, Shasha
Publicado: (2022)