Cargando…
Sugarcane–Peanut Intercropping System Enhances Bacteria Abundance, Diversity, and Sugarcane Parameters in Rhizospheric and Bulk Soils
Sugarcane–legume intercropping systems can effectively control pests and diseases as well as improve the fertility and health of farmland soil. However, little is known about the response of bacterial abundance, diversity, and community composition in the rhizosphere and non-rhizosphere soils under...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891962/ https://www.ncbi.nlm.nih.gov/pubmed/35250913 http://dx.doi.org/10.3389/fmicb.2021.815129 |
_version_ | 1784662027250171904 |
---|---|
author | Pang, Ziqin Fallah, Nyumah Weng, Peiying Zhou, Yongmei Tang, Xiumei Tayyab, Muhammad Liu, Yueming Liu, Qiang Xiao, Yijie Hu, Chaohua Kan, Yongjun Lin, Wenxiong Yuan, Zhaonian |
author_facet | Pang, Ziqin Fallah, Nyumah Weng, Peiying Zhou, Yongmei Tang, Xiumei Tayyab, Muhammad Liu, Yueming Liu, Qiang Xiao, Yijie Hu, Chaohua Kan, Yongjun Lin, Wenxiong Yuan, Zhaonian |
author_sort | Pang, Ziqin |
collection | PubMed |
description | Sugarcane–legume intercropping systems can effectively control pests and diseases as well as improve the fertility and health of farmland soil. However, little is known about the response of bacterial abundance, diversity, and community composition in the rhizosphere and non-rhizosphere soils under the sugarcane–peanut farming system. A field experiment was conducted with two treatments: sugarcane monoculture and sugarcane–peanut intercropping to examine the response of sugarcane parameters and edaphic factors. We also deciphered bacterial abundance, diversity, and community composition in the root endosphere, rhizosphere, and bulk soil by leveraging Illumina sequencing to conduct the molecular characterization of the 16S rRNA gene and nitrogenase (nifH) gene. We observed that sugarcane–peanut intercropping exhibited the advantages of tremendously increasing cane stalk height, stalk weight, and millable stalk number/20 m, and edaphic factors, namely, pH (1.13 and 1.93), and available phosphorus exhibited a fourfold and sixfold increase (4.66 and 6.56), particularly in the rhizosphere and bulk soils, respectively. Our result also showed that the sugarcane–peanut intercropping system significantly increased the bacterial richness of the 16S rRNA gene sequencing data by 13.80 and 9.28% in the bulk soil and rhizosphere soil relative to those in the monocropping sugarcane system, respectively. At the same time, sugarcane intercropping with peanuts significantly increased the Shannon diversity of nitrogen-fixing bacteria in the sugarcane rhizosphere soil. Moreover, most edaphic factors exhibited a positive regularity effect on bacterial community composition under the intercropping system. A linear discriminant analysis with effect size analysis of the 16S rRNA sequencing data revealed that bacteria in the root endosphere of the intercropped cane proliferated profoundly, primarily occupied by Devosia, Rhizobiales, Myxococcales, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Bradyrhizobium, and Sphingomonas. In conclusion, our findings demonstrated that sugarcane–peanut intercropping can enhance edaphic factors, sugarcane parameters, and bacterial abundance and diversity without causing adverse impacts on crop production and soil. |
format | Online Article Text |
id | pubmed-8891962 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88919622022-03-04 Sugarcane–Peanut Intercropping System Enhances Bacteria Abundance, Diversity, and Sugarcane Parameters in Rhizospheric and Bulk Soils Pang, Ziqin Fallah, Nyumah Weng, Peiying Zhou, Yongmei Tang, Xiumei Tayyab, Muhammad Liu, Yueming Liu, Qiang Xiao, Yijie Hu, Chaohua Kan, Yongjun Lin, Wenxiong Yuan, Zhaonian Front Microbiol Microbiology Sugarcane–legume intercropping systems can effectively control pests and diseases as well as improve the fertility and health of farmland soil. However, little is known about the response of bacterial abundance, diversity, and community composition in the rhizosphere and non-rhizosphere soils under the sugarcane–peanut farming system. A field experiment was conducted with two treatments: sugarcane monoculture and sugarcane–peanut intercropping to examine the response of sugarcane parameters and edaphic factors. We also deciphered bacterial abundance, diversity, and community composition in the root endosphere, rhizosphere, and bulk soil by leveraging Illumina sequencing to conduct the molecular characterization of the 16S rRNA gene and nitrogenase (nifH) gene. We observed that sugarcane–peanut intercropping exhibited the advantages of tremendously increasing cane stalk height, stalk weight, and millable stalk number/20 m, and edaphic factors, namely, pH (1.13 and 1.93), and available phosphorus exhibited a fourfold and sixfold increase (4.66 and 6.56), particularly in the rhizosphere and bulk soils, respectively. Our result also showed that the sugarcane–peanut intercropping system significantly increased the bacterial richness of the 16S rRNA gene sequencing data by 13.80 and 9.28% in the bulk soil and rhizosphere soil relative to those in the monocropping sugarcane system, respectively. At the same time, sugarcane intercropping with peanuts significantly increased the Shannon diversity of nitrogen-fixing bacteria in the sugarcane rhizosphere soil. Moreover, most edaphic factors exhibited a positive regularity effect on bacterial community composition under the intercropping system. A linear discriminant analysis with effect size analysis of the 16S rRNA sequencing data revealed that bacteria in the root endosphere of the intercropped cane proliferated profoundly, primarily occupied by Devosia, Rhizobiales, Myxococcales, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Bradyrhizobium, and Sphingomonas. In conclusion, our findings demonstrated that sugarcane–peanut intercropping can enhance edaphic factors, sugarcane parameters, and bacterial abundance and diversity without causing adverse impacts on crop production and soil. Frontiers Media S.A. 2022-02-17 /pmc/articles/PMC8891962/ /pubmed/35250913 http://dx.doi.org/10.3389/fmicb.2021.815129 Text en Copyright © 2022 Pang, Fallah, Weng, Zhou, Tang, Tayyab, Liu, Liu, Xiao, Hu, Kan, Lin and Yuan. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Pang, Ziqin Fallah, Nyumah Weng, Peiying Zhou, Yongmei Tang, Xiumei Tayyab, Muhammad Liu, Yueming Liu, Qiang Xiao, Yijie Hu, Chaohua Kan, Yongjun Lin, Wenxiong Yuan, Zhaonian Sugarcane–Peanut Intercropping System Enhances Bacteria Abundance, Diversity, and Sugarcane Parameters in Rhizospheric and Bulk Soils |
title | Sugarcane–Peanut Intercropping System Enhances Bacteria Abundance, Diversity, and Sugarcane Parameters in Rhizospheric and Bulk Soils |
title_full | Sugarcane–Peanut Intercropping System Enhances Bacteria Abundance, Diversity, and Sugarcane Parameters in Rhizospheric and Bulk Soils |
title_fullStr | Sugarcane–Peanut Intercropping System Enhances Bacteria Abundance, Diversity, and Sugarcane Parameters in Rhizospheric and Bulk Soils |
title_full_unstemmed | Sugarcane–Peanut Intercropping System Enhances Bacteria Abundance, Diversity, and Sugarcane Parameters in Rhizospheric and Bulk Soils |
title_short | Sugarcane–Peanut Intercropping System Enhances Bacteria Abundance, Diversity, and Sugarcane Parameters in Rhizospheric and Bulk Soils |
title_sort | sugarcane–peanut intercropping system enhances bacteria abundance, diversity, and sugarcane parameters in rhizospheric and bulk soils |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891962/ https://www.ncbi.nlm.nih.gov/pubmed/35250913 http://dx.doi.org/10.3389/fmicb.2021.815129 |
work_keys_str_mv | AT pangziqin sugarcanepeanutintercroppingsystemenhancesbacteriaabundancediversityandsugarcaneparametersinrhizosphericandbulksoils AT fallahnyumah sugarcanepeanutintercroppingsystemenhancesbacteriaabundancediversityandsugarcaneparametersinrhizosphericandbulksoils AT wengpeiying sugarcanepeanutintercroppingsystemenhancesbacteriaabundancediversityandsugarcaneparametersinrhizosphericandbulksoils AT zhouyongmei sugarcanepeanutintercroppingsystemenhancesbacteriaabundancediversityandsugarcaneparametersinrhizosphericandbulksoils AT tangxiumei sugarcanepeanutintercroppingsystemenhancesbacteriaabundancediversityandsugarcaneparametersinrhizosphericandbulksoils AT tayyabmuhammad sugarcanepeanutintercroppingsystemenhancesbacteriaabundancediversityandsugarcaneparametersinrhizosphericandbulksoils AT liuyueming sugarcanepeanutintercroppingsystemenhancesbacteriaabundancediversityandsugarcaneparametersinrhizosphericandbulksoils AT liuqiang sugarcanepeanutintercroppingsystemenhancesbacteriaabundancediversityandsugarcaneparametersinrhizosphericandbulksoils AT xiaoyijie sugarcanepeanutintercroppingsystemenhancesbacteriaabundancediversityandsugarcaneparametersinrhizosphericandbulksoils AT huchaohua sugarcanepeanutintercroppingsystemenhancesbacteriaabundancediversityandsugarcaneparametersinrhizosphericandbulksoils AT kanyongjun sugarcanepeanutintercroppingsystemenhancesbacteriaabundancediversityandsugarcaneparametersinrhizosphericandbulksoils AT linwenxiong sugarcanepeanutintercroppingsystemenhancesbacteriaabundancediversityandsugarcaneparametersinrhizosphericandbulksoils AT yuanzhaonian sugarcanepeanutintercroppingsystemenhancesbacteriaabundancediversityandsugarcaneparametersinrhizosphericandbulksoils |