Cargando…

Distributional Measures of Semantic Abstraction

This article provides an in-depth study of distributional measures for distinguishing between degrees of semantic abstraction. Abstraction is considered a “central construct in cognitive science” (Barsalou, 2003) and a “process of information reduction that allows for efficient storage and retrieval...

Descripción completa

Detalles Bibliográficos
Autores principales: Schulte im Walde, Sabine, Frassinelli, Diego
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892386/
https://www.ncbi.nlm.nih.gov/pubmed/35252847
http://dx.doi.org/10.3389/frai.2021.796756
_version_ 1784662155103043584
author Schulte im Walde, Sabine
Frassinelli, Diego
author_facet Schulte im Walde, Sabine
Frassinelli, Diego
author_sort Schulte im Walde, Sabine
collection PubMed
description This article provides an in-depth study of distributional measures for distinguishing between degrees of semantic abstraction. Abstraction is considered a “central construct in cognitive science” (Barsalou, 2003) and a “process of information reduction that allows for efficient storage and retrieval of central knowledge” (Burgoon et al., 2013). Relying on the distributional hypothesis, computational studies have successfully exploited measures of contextual co-occurrence and neighbourhood density to distinguish between conceptual semantic categorisations. So far, these studies have modeled semantic abstraction across lexical-semantic tasks such as ambiguity; diachronic meaning changes; abstractness vs. concreteness; and hypernymy. Yet, the distributional approaches target different conceptual types of semantic relatedness, and as to our knowledge not much attention has been paid to apply, compare or analyse the computational abstraction measures across conceptual tasks. The current article suggests a novel perspective that exploits variants of distributional measures to investigate semantic abstraction in English in terms of the abstract–concrete dichotomy (e.g., glory–banana) and in terms of the generality–specificity distinction (e.g., animal–fish), in order to compare the strengths and weaknesses of the measures regarding categorisations of abstraction, and to determine and investigate conceptual differences. In a series of experiments we identify reliable distributional measures for both instantiations of lexical-semantic abstraction and reach a precision higher than 0.7, but the measures clearly differ for the abstract–concrete vs. abstract–specific distinctions and for nouns vs. verbs. Overall, we identify two groups of measures, (i) frequency and word entropy when distinguishing between more and less abstract words in terms of the generality–specificity distinction, and (ii) neighbourhood density variants (especially target–context diversity) when distinguishing between more and less abstract words in terms of the abstract–concrete dichotomy. We conclude that more general words are used more often and are less surprising than more specific words, and that abstract words establish themselves empirically in semantically more diverse contexts than concrete words. Finally, our experiments once more point out that distributional models of conceptual categorisations need to take word classes and ambiguity into account: results for nouns vs. verbs differ in many respects, and ambiguity hinders fine-tuning empirical observations.
format Online
Article
Text
id pubmed-8892386
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-88923862022-03-04 Distributional Measures of Semantic Abstraction Schulte im Walde, Sabine Frassinelli, Diego Front Artif Intell Artificial Intelligence This article provides an in-depth study of distributional measures for distinguishing between degrees of semantic abstraction. Abstraction is considered a “central construct in cognitive science” (Barsalou, 2003) and a “process of information reduction that allows for efficient storage and retrieval of central knowledge” (Burgoon et al., 2013). Relying on the distributional hypothesis, computational studies have successfully exploited measures of contextual co-occurrence and neighbourhood density to distinguish between conceptual semantic categorisations. So far, these studies have modeled semantic abstraction across lexical-semantic tasks such as ambiguity; diachronic meaning changes; abstractness vs. concreteness; and hypernymy. Yet, the distributional approaches target different conceptual types of semantic relatedness, and as to our knowledge not much attention has been paid to apply, compare or analyse the computational abstraction measures across conceptual tasks. The current article suggests a novel perspective that exploits variants of distributional measures to investigate semantic abstraction in English in terms of the abstract–concrete dichotomy (e.g., glory–banana) and in terms of the generality–specificity distinction (e.g., animal–fish), in order to compare the strengths and weaknesses of the measures regarding categorisations of abstraction, and to determine and investigate conceptual differences. In a series of experiments we identify reliable distributional measures for both instantiations of lexical-semantic abstraction and reach a precision higher than 0.7, but the measures clearly differ for the abstract–concrete vs. abstract–specific distinctions and for nouns vs. verbs. Overall, we identify two groups of measures, (i) frequency and word entropy when distinguishing between more and less abstract words in terms of the generality–specificity distinction, and (ii) neighbourhood density variants (especially target–context diversity) when distinguishing between more and less abstract words in terms of the abstract–concrete dichotomy. We conclude that more general words are used more often and are less surprising than more specific words, and that abstract words establish themselves empirically in semantically more diverse contexts than concrete words. Finally, our experiments once more point out that distributional models of conceptual categorisations need to take word classes and ambiguity into account: results for nouns vs. verbs differ in many respects, and ambiguity hinders fine-tuning empirical observations. Frontiers Media S.A. 2022-02-08 /pmc/articles/PMC8892386/ /pubmed/35252847 http://dx.doi.org/10.3389/frai.2021.796756 Text en Copyright © 2022 Schulte im Walde and Frassinelli. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Artificial Intelligence
Schulte im Walde, Sabine
Frassinelli, Diego
Distributional Measures of Semantic Abstraction
title Distributional Measures of Semantic Abstraction
title_full Distributional Measures of Semantic Abstraction
title_fullStr Distributional Measures of Semantic Abstraction
title_full_unstemmed Distributional Measures of Semantic Abstraction
title_short Distributional Measures of Semantic Abstraction
title_sort distributional measures of semantic abstraction
topic Artificial Intelligence
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892386/
https://www.ncbi.nlm.nih.gov/pubmed/35252847
http://dx.doi.org/10.3389/frai.2021.796756
work_keys_str_mv AT schulteimwaldesabine distributionalmeasuresofsemanticabstraction
AT frassinellidiego distributionalmeasuresofsemanticabstraction