Cargando…

Assessing the 3D Printability of an Elastomeric Poly(caprolactone-co-lactide) Copolymer as a Potential Material for 3D Printing Tracheal Scaffolds

[Image: see text] The advent of 3D printing technology has made remarkable progress in the field of tissue engineering. Yet, it has been challenging to reproduce the desired mechanical properties of certain tissues by 3D printing. This was majorly due to the lack of 3D printable materials possessing...

Descripción completa

Detalles Bibliográficos
Autores principales: V.G., Rahul, Wilson, Jijo, V. Thomas, Lynda, Nair, Prabha D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892476/
https://www.ncbi.nlm.nih.gov/pubmed/35252691
http://dx.doi.org/10.1021/acsomega.1c06679
Descripción
Sumario:[Image: see text] The advent of 3D printing technology has made remarkable progress in the field of tissue engineering. Yet, it has been challenging to reproduce the desired mechanical properties of certain tissues by 3D printing. This was majorly due to the lack of 3D printable materials possessing mechanical properties similar to the native tissue. In this study, we have synthesized four different ratios of poly(caprolactone-co-lactide (PLCL) and tested their 3D printing capabilities. The physicochemical properties of the material were characterized using Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). Furthermore, the mechanical properties were assessed using the universal testing machine (UTM). The ratio with the higher lactide content was found to have better printability. Out of the different ratios assessed, a suitable ratio having the desired mechanical properties and printability was identified and 3D printed into a tracheal scaffold. Thus, PLCL can be a potential material for 3D printing of tissues like the trachea.