Cargando…
Fault Detection of Non-Gaussian and Nonlinear Processes Based on Independent Slow Feature Analysis
[Image: see text] Independent component analysis (ICA) is an excellent latent variables (LVs) extraction method that can maximize the non-Gaussianity between LVs to extract statistically independent latent variables and which has been widely used in multivariate statistical process monitoring (MSPM)...
Autores principales: | Li, Chang, Zhou, Zhe, Wen, Chenglin, Li, Zuxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892482/ https://www.ncbi.nlm.nih.gov/pubmed/35252689 http://dx.doi.org/10.1021/acsomega.1c06649 |
Ejemplares similares
-
Fault Detection and Isolation of Non-Gaussian and
Nonlinear Processes Based on Statistics Pattern Analysis and the k-Nearest Neighbor Method
por: Zhou, Zhe, et al.
Publicado: (2022) -
Fault detection and fault-tolerant control for nonlinear systems
por: Li, Linlin
Publicado: (2016) -
A Differential Privacy Strategy Based on Local Features of Non-Gaussian Noise in Federated Learning
por: Wang, Xinyi, et al.
Publicado: (2022) -
Multisensor Estimation Fusion with Gaussian Process for Nonlinear Dynamic Systems
por: Liao, Yiwei, et al.
Publicado: (2019) -
Variational Bayesian Inference for Nonlinear Hawkes Process with Gaussian Process Self-Effects
por: Malem-Shinitski, Noa, et al.
Publicado: (2022)