Cargando…
Gold(I)-Catalyzed Synthesis of 4H-Benzo[d][1,3]oxazines and Biological Evaluation of Activity in Breast Cancer Cells
[Image: see text] The first gold(I)-catalyzed cycloisomerization procedure applied to the synthesis of substituted 4H-benzo[d][1,3]oxazines has been developed starting from N-(2-alkynyl)aryl benzamides. The chemoselective oxygen cyclization via the 6-exo-dig pathway yielded the observed heterocycles...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892638/ https://www.ncbi.nlm.nih.gov/pubmed/35252686 http://dx.doi.org/10.1021/acsomega.1c06637 |
Sumario: | [Image: see text] The first gold(I)-catalyzed cycloisomerization procedure applied to the synthesis of substituted 4H-benzo[d][1,3]oxazines has been developed starting from N-(2-alkynyl)aryl benzamides. The chemoselective oxygen cyclization via the 6-exo-dig pathway yielded the observed heterocycles in modest to good chemical yields under very mild reaction conditions. The obtained oxazines were assayed on the breast cancer (BC)-derived cell lines MCF-7 and HCC1954 with differential biological activity. The newly synthesized 4H-benzo[d][1,3]oxazine compounds showed several degrees of cell proliferation inhibition with a remarkable effect for those compounds having a substituted aryl at C-2 of the molecules. The 4H-benzo[d][1,3]oxazines showed an IC(50) ranking from 3.1 to 95 μM in MCF-7 and HCC1954 cells. These compounds represent potential drug candidates for BC treatment. However, additional assays are needed to elucidate their complete effect over the cellular and molecular hallmarks of cancer. |
---|