Cargando…
Hybrid Synthetic and Computational Study of an Optimized, Solvent-Free Approach to Curcuminoids
[Image: see text] A green and optimized protocol has been developed for the preparation of symmetric 1,7-bis(aryl)-1,6-heptadiene-3,5-diones and asymmetric 2-aryl-6-arylidenecyclohexanones with modified substrate scope and good functional group tolerance. Syntheses proceed smoothly under solvent-fre...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892666/ https://www.ncbi.nlm.nih.gov/pubmed/35252716 http://dx.doi.org/10.1021/acsomega.1c07006 |
Sumario: | [Image: see text] A green and optimized protocol has been developed for the preparation of symmetric 1,7-bis(aryl)-1,6-heptadiene-3,5-diones and asymmetric 2-aryl-6-arylidenecyclohexanones with modified substrate scope and good functional group tolerance. Syntheses proceed smoothly under solvent-free conditions, providing moderate to excellent product yields with a minimal workup procedure. Control experiments, spectroscopic, and computational studies support a mechanism involving the boron-assisted in situ generation of imine intermediates. Crystal structures of three curcuminoids and isolated mechanistic intermediates are reported. The data provide insight for the further development of solvent-free protocols toward diverse curcumin derivatives in the fields of pharmaceutical and synthetic chemistries. |
---|