Cargando…

Characterization of γ-Cadinene Enzymes in Ganoderma lucidum and Ganoderma sinensis from Basidiomycetes Provides Insight into the Identification of Terpenoid Synthases

[Image: see text] Enzymes boost protein engineering, directed evolution, and the biochemical industry and are also the cornerstone of metabolic engineering. Basidiomycetes are known to produce a large variety of terpenoids with unique structures. However, basidiomycetous terpene synthases remain lar...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Rui, Wu, Xinlong, Wang, Qi, Qi, Pengyan, Zhang, Yuna, Wang, Lizhi, Sun, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892675/
https://www.ncbi.nlm.nih.gov/pubmed/35252713
http://dx.doi.org/10.1021/acsomega.1c06792
Descripción
Sumario:[Image: see text] Enzymes boost protein engineering, directed evolution, and the biochemical industry and are also the cornerstone of metabolic engineering. Basidiomycetes are known to produce a large variety of terpenoids with unique structures. However, basidiomycetous terpene synthases remain largely untapped. Therefore, we provide a modeling method to obtain specific terpene synthases. Aided by bioinformatics analysis, three γ-cadinene enzymes from Ganoderma lucidum and Ganoderma sinensis were accurately predicted and identified experimentally. Based on the highly conserved amino motifs of the characterized γ-cadinene enzymes, the enzyme was reassembled as model 1. Using this model as a template, 67 homologous sequences of the γ-cadinene enzyme were screened from the National Center for Biotechnology Information (NCBI). According to the 67 sequences, the same gene structure, and similar conserved motifs to model 1, the γ-cadinene enzyme model was further improved by the same construction method and renamed as model 2. The results of bioinformatics analysis show that the conservative regions of models 1 and 2 are highly similar. In addition, five of these sequences were verified, 100% of which were γ-cadinene enzymes. The accuracy of the prediction ability of the γ-cadinene enzyme model was proven. In the same way, we also reanalyzed the identified Δ(6)-protoilludene enzymes in fungi and (−)-α-bisabolol enzymes in plants, all of which have their own unique conserved motifs. Our research method is expected to be used to study other terpenoid synthases with a similar or the same function in basidiomycetes, ascomycetes, bacteria, and plants and to provide rich enzyme resources.