Cargando…
A k-means method for trends of time series: An application to time series of COVID-19 cases in Japan
A k-means method style clustering algorithm is proposed for trends of multivariate time series. The usual k-means method is based on distances or dissimilarity measures among multivariate data and centroids of clusters. Some similarity or dissimilarity measures are also available for multivariate ti...
Autor principal: | Watanabe, Norio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892829/ https://www.ncbi.nlm.nih.gov/pubmed/35425885 http://dx.doi.org/10.1007/s42081-022-00148-0 |
Ejemplares similares
-
Time series analysis: time series analysis methods and applications
por: Rao, Tata Subba, et al.
Publicado: (2012) -
Time Series Analysis of Incidence Data of Influenza in Japan
por: Sumi, Ayako, et al.
Publicado: (2011) -
Spectral Method in Epidemic Time Series: Application to COVID-19 Pandemic
por: Demongeot, Jacques, et al.
Publicado: (2022) -
Temperature clusters in commercial buildings using k-means and time series clustering
por: Wickramasinghe, Ashani, et al.
Publicado: (2022) -
The Association Between Telehealth Utilization and Policy Responses on COVID-19 in Japan: Interrupted Time-Series Analysis
por: Ishikawa, Tomoki, et al.
Publicado: (2022)