Cargando…

Study of the Mechanical Behavior of Organic Matters Contained in Source Rocks: New Insights into the Role of Bitumen

[Image: see text] Assessment of mechanical properties of organic matters contained in unconventional formations is needed to understand the geomechanics of source rocks. The organic matters are part of the source rock matrix, and they are made of kerogen and bitumen. Although the literature has some...

Descripción completa

Detalles Bibliográficos
Autores principales: Aslanov, Elshad, Alafnan, Saad F., Mahmoud, Mohamed, Abdulraheem, Abdulazeez, Aljawad, Murtada Saleh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892912/
https://www.ncbi.nlm.nih.gov/pubmed/35252693
http://dx.doi.org/10.1021/acsomega.1c06717
_version_ 1784662278164971520
author Aslanov, Elshad
Alafnan, Saad F.
Mahmoud, Mohamed
Abdulraheem, Abdulazeez
Aljawad, Murtada Saleh
author_facet Aslanov, Elshad
Alafnan, Saad F.
Mahmoud, Mohamed
Abdulraheem, Abdulazeez
Aljawad, Murtada Saleh
author_sort Aslanov, Elshad
collection PubMed
description [Image: see text] Assessment of mechanical properties of organic matters contained in unconventional formations is needed to understand the geomechanics of source rocks. The organic matters are part of the source rock matrix, and they are made of kerogen and bitumen. Although the literature has some studies addressing the properties of kerogen and bitumen, no apparent attempts were made to address the mechanical behavior of organic matters as a combination of both. Isolation of organic matters from the rocks for experimental assessments has some risks of altering the original properties because of their delicate nature and their existence as micro- and nanoconstituents. Some computational approaches such as molecular simulation can serve as an alternative platform for the purpose of delineating organic matter properties including the mechanical ones. This work implements available 3D molecular modeling of kerogen and bitumen with different ratios to mimic organic matters that can be investigated for the mechanical properties. Upon the recreation of different configurations of organic matters molecularly, mechanical parameters such Young’s, bulk, and shear constants, as well as the stress–strain relationship for the elastic and plastic deformations were extracted. The mechanical behavior was closely monitored before and after saturation with a number of gases that are commonly found in subsurface formations such as methane, carbon dioxide, and nitrogen. The results revealed that the organic matters had a mechanical behavior envelope similar to what were reported for organic-based materials such as polymers. Moreover, the structures containing bitumen exhibited larger values of Poisson’s ratio, indicating less likelihood of them to degrade upon applied stresses. The presented data substantiate the importance of accounting for both bitumen and kerogen in modeling the petrophysics and the mechanical behavior of the organic matters.
format Online
Article
Text
id pubmed-8892912
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-88929122022-03-03 Study of the Mechanical Behavior of Organic Matters Contained in Source Rocks: New Insights into the Role of Bitumen Aslanov, Elshad Alafnan, Saad F. Mahmoud, Mohamed Abdulraheem, Abdulazeez Aljawad, Murtada Saleh ACS Omega [Image: see text] Assessment of mechanical properties of organic matters contained in unconventional formations is needed to understand the geomechanics of source rocks. The organic matters are part of the source rock matrix, and they are made of kerogen and bitumen. Although the literature has some studies addressing the properties of kerogen and bitumen, no apparent attempts were made to address the mechanical behavior of organic matters as a combination of both. Isolation of organic matters from the rocks for experimental assessments has some risks of altering the original properties because of their delicate nature and their existence as micro- and nanoconstituents. Some computational approaches such as molecular simulation can serve as an alternative platform for the purpose of delineating organic matter properties including the mechanical ones. This work implements available 3D molecular modeling of kerogen and bitumen with different ratios to mimic organic matters that can be investigated for the mechanical properties. Upon the recreation of different configurations of organic matters molecularly, mechanical parameters such Young’s, bulk, and shear constants, as well as the stress–strain relationship for the elastic and plastic deformations were extracted. The mechanical behavior was closely monitored before and after saturation with a number of gases that are commonly found in subsurface formations such as methane, carbon dioxide, and nitrogen. The results revealed that the organic matters had a mechanical behavior envelope similar to what were reported for organic-based materials such as polymers. Moreover, the structures containing bitumen exhibited larger values of Poisson’s ratio, indicating less likelihood of them to degrade upon applied stresses. The presented data substantiate the importance of accounting for both bitumen and kerogen in modeling the petrophysics and the mechanical behavior of the organic matters. American Chemical Society 2022-02-15 /pmc/articles/PMC8892912/ /pubmed/35252693 http://dx.doi.org/10.1021/acsomega.1c06717 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Aslanov, Elshad
Alafnan, Saad F.
Mahmoud, Mohamed
Abdulraheem, Abdulazeez
Aljawad, Murtada Saleh
Study of the Mechanical Behavior of Organic Matters Contained in Source Rocks: New Insights into the Role of Bitumen
title Study of the Mechanical Behavior of Organic Matters Contained in Source Rocks: New Insights into the Role of Bitumen
title_full Study of the Mechanical Behavior of Organic Matters Contained in Source Rocks: New Insights into the Role of Bitumen
title_fullStr Study of the Mechanical Behavior of Organic Matters Contained in Source Rocks: New Insights into the Role of Bitumen
title_full_unstemmed Study of the Mechanical Behavior of Organic Matters Contained in Source Rocks: New Insights into the Role of Bitumen
title_short Study of the Mechanical Behavior of Organic Matters Contained in Source Rocks: New Insights into the Role of Bitumen
title_sort study of the mechanical behavior of organic matters contained in source rocks: new insights into the role of bitumen
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892912/
https://www.ncbi.nlm.nih.gov/pubmed/35252693
http://dx.doi.org/10.1021/acsomega.1c06717
work_keys_str_mv AT aslanovelshad studyofthemechanicalbehavioroforganicmatterscontainedinsourcerocksnewinsightsintotheroleofbitumen
AT alafnansaadf studyofthemechanicalbehavioroforganicmatterscontainedinsourcerocksnewinsightsintotheroleofbitumen
AT mahmoudmohamed studyofthemechanicalbehavioroforganicmatterscontainedinsourcerocksnewinsightsintotheroleofbitumen
AT abdulraheemabdulazeez studyofthemechanicalbehavioroforganicmatterscontainedinsourcerocksnewinsightsintotheroleofbitumen
AT aljawadmurtadasaleh studyofthemechanicalbehavioroforganicmatterscontainedinsourcerocksnewinsightsintotheroleofbitumen