Cargando…
Deriving Ranges of Optimal Estimated Transcript Expression due to Nonidentifiability
Current expression quantification methods suffer from a fundamental but undercharacterized type of error: the most likely estimates for transcript abundances are not unique. This means multiple estimates of transcript abundances generate the observed RNA-seq reads with equal likelihood, and the unde...
Autores principales: | Zheng, Hongyu, Ma, Cong, Kingsford, Carl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892959/ https://www.ncbi.nlm.nih.gov/pubmed/35041494 http://dx.doi.org/10.1089/cmb.2021.0444 |
Ejemplares similares
-
Nonidentifiability of the Source of Intrinsic Noise in Gene
Expression from Single-Burst Data
por: Ingram, Piers J., et al.
Publicado: (2008) -
Exact transcript quantification over splice graphs
por: Ma, Cong, et al.
Publicado: (2021) -
Rapidly changing speciation and extinction rates can be inferred in spite of nonidentifiability
por: Kopperud, Bjørn T., et al.
Publicado: (2023) -
The Reset Neurotomy within a Nonidentifiable Zone of Injury after Trauma
por: Schnack, Lauren L., et al.
Publicado: (2023) -
Bifactor Models for Predicting Criteria by General and Specific Factors: Problems of Nonidentifiability and Alternative Solutions
por: Eid, Michael, et al.
Publicado: (2018)