Cargando…

Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair In Vitro and In Vivo

Nearly 90% of human pathogenic mutations are caused by small genetic variations, and methods to correct these errors efficiently are critically important. One way to make small DNA changes is providing a single-stranded oligo deoxynucleotide (ssODN) containing an alteration coupled with a targeted d...

Descripción completa

Detalles Bibliográficos
Autores principales: Simone, Brandon W., Lee, Han B., Daby, Camden L., Ata, Hirotaka, Restrepo-Castillo, Santiago, Martínez-Gálvez, Gabriel, Kar, Bibekananda, Gendron, William A.C., Clark, Karl J., Ekker, Stephen C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc., publishers 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892967/
https://www.ncbi.nlm.nih.gov/pubmed/34935462
http://dx.doi.org/10.1089/crispr.2021.0087
_version_ 1784662285920239616
author Simone, Brandon W.
Lee, Han B.
Daby, Camden L.
Ata, Hirotaka
Restrepo-Castillo, Santiago
Martínez-Gálvez, Gabriel
Kar, Bibekananda
Gendron, William A.C.
Clark, Karl J.
Ekker, Stephen C.
author_facet Simone, Brandon W.
Lee, Han B.
Daby, Camden L.
Ata, Hirotaka
Restrepo-Castillo, Santiago
Martínez-Gálvez, Gabriel
Kar, Bibekananda
Gendron, William A.C.
Clark, Karl J.
Ekker, Stephen C.
author_sort Simone, Brandon W.
collection PubMed
description Nearly 90% of human pathogenic mutations are caused by small genetic variations, and methods to correct these errors efficiently are critically important. One way to make small DNA changes is providing a single-stranded oligo deoxynucleotide (ssODN) containing an alteration coupled with a targeted double-strand break (DSB) at the target locus in the genome. Coupling an ssODN donor with a CRISPR-Cas9-mediated DSB is one of the most streamlined approaches to introduce small changes. However, in many systems, this approach is inefficient and introduces imprecise repair at the genetic junctions. We herein report a technology that uses spatiotemporal localization of an ssODN with CRISPR-Cas9 to improve gene alteration. We show that by fusing an ssODN template to the trans-activating RNA (tracrRNA), we recover precise genetic alterations, with increased integration and precision in vitro and in vivo. Finally, we show that this technology can be used to enhance gene conversion with other gene editing tools such as transcription activator like effector nucleases.
format Online
Article
Text
id pubmed-8892967
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Mary Ann Liebert, Inc., publishers
record_format MEDLINE/PubMed
spelling pubmed-88929672022-03-03 Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair In Vitro and In Vivo Simone, Brandon W. Lee, Han B. Daby, Camden L. Ata, Hirotaka Restrepo-Castillo, Santiago Martínez-Gálvez, Gabriel Kar, Bibekananda Gendron, William A.C. Clark, Karl J. Ekker, Stephen C. CRISPR J Research Articles Nearly 90% of human pathogenic mutations are caused by small genetic variations, and methods to correct these errors efficiently are critically important. One way to make small DNA changes is providing a single-stranded oligo deoxynucleotide (ssODN) containing an alteration coupled with a targeted double-strand break (DSB) at the target locus in the genome. Coupling an ssODN donor with a CRISPR-Cas9-mediated DSB is one of the most streamlined approaches to introduce small changes. However, in many systems, this approach is inefficient and introduces imprecise repair at the genetic junctions. We herein report a technology that uses spatiotemporal localization of an ssODN with CRISPR-Cas9 to improve gene alteration. We show that by fusing an ssODN template to the trans-activating RNA (tracrRNA), we recover precise genetic alterations, with increased integration and precision in vitro and in vivo. Finally, we show that this technology can be used to enhance gene conversion with other gene editing tools such as transcription activator like effector nucleases. Mary Ann Liebert, Inc., publishers 2022-02-01 2022-02-22 /pmc/articles/PMC8892967/ /pubmed/34935462 http://dx.doi.org/10.1089/crispr.2021.0087 Text en © Brandon W. Simone, et al. 2022; Published by Mary Ann Liebert, Inc. https://creativecommons.org/licenses/by-nc/4.0/This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License [CC-BY-NC] (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are cited.
spellingShingle Research Articles
Simone, Brandon W.
Lee, Han B.
Daby, Camden L.
Ata, Hirotaka
Restrepo-Castillo, Santiago
Martínez-Gálvez, Gabriel
Kar, Bibekananda
Gendron, William A.C.
Clark, Karl J.
Ekker, Stephen C.
Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair In Vitro and In Vivo
title Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair In Vitro and In Vivo
title_full Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair In Vitro and In Vivo
title_fullStr Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair In Vitro and In Vivo
title_full_unstemmed Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair In Vitro and In Vivo
title_short Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair In Vitro and In Vivo
title_sort chimeric rna: dna tracrrna improves homology-directed repair in vitro and in vivo
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892967/
https://www.ncbi.nlm.nih.gov/pubmed/34935462
http://dx.doi.org/10.1089/crispr.2021.0087
work_keys_str_mv AT simonebrandonw chimericrnadnatracrrnaimproveshomologydirectedrepairinvitroandinvivo
AT leehanb chimericrnadnatracrrnaimproveshomologydirectedrepairinvitroandinvivo
AT dabycamdenl chimericrnadnatracrrnaimproveshomologydirectedrepairinvitroandinvivo
AT atahirotaka chimericrnadnatracrrnaimproveshomologydirectedrepairinvitroandinvivo
AT restrepocastillosantiago chimericrnadnatracrrnaimproveshomologydirectedrepairinvitroandinvivo
AT martinezgalvezgabriel chimericrnadnatracrrnaimproveshomologydirectedrepairinvitroandinvivo
AT karbibekananda chimericrnadnatracrrnaimproveshomologydirectedrepairinvitroandinvivo
AT gendronwilliamac chimericrnadnatracrrnaimproveshomologydirectedrepairinvitroandinvivo
AT clarkkarlj chimericrnadnatracrrnaimproveshomologydirectedrepairinvitroandinvivo
AT ekkerstephenc chimericrnadnatracrrnaimproveshomologydirectedrepairinvitroandinvivo