Cargando…
Heterosis Derived From Nonadditive Effects of the BnFLC Homologs Coordinates Early Flowering and High Yield in Rapeseed (Brassica napus L.)
Early flowering facilitates crops to adapt multiple cropping systems or growing regions with a short frost-free season; however, it usually brings an obvious yield loss. In this study, we identified that the three genes, namely, BnFLC.A2, BnFLC.C2, and BnFLC.A3b, are the major determinants for the f...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8893081/ https://www.ncbi.nlm.nih.gov/pubmed/35251061 http://dx.doi.org/10.3389/fpls.2021.798371 |
_version_ | 1784662314431021056 |
---|---|
author | Fang, Caochuang Wang, Zhaoyang Wang, Pengfei Song, Yixian Ahmad, Ali Dong, Faming Hong, Dengfeng Yang, Guangsheng |
author_facet | Fang, Caochuang Wang, Zhaoyang Wang, Pengfei Song, Yixian Ahmad, Ali Dong, Faming Hong, Dengfeng Yang, Guangsheng |
author_sort | Fang, Caochuang |
collection | PubMed |
description | Early flowering facilitates crops to adapt multiple cropping systems or growing regions with a short frost-free season; however, it usually brings an obvious yield loss. In this study, we identified that the three genes, namely, BnFLC.A2, BnFLC.C2, and BnFLC.A3b, are the major determinants for the flowering time (FT) variation of two elite rapeseed (Brassica napus L.) accessions, i.e., 616A and R11. The early-flowering alleles (i.e., Bnflc.a2 and Bnflc.c2) and late-flowering allele (i.e., BnFLC.A3b) from R11 were introgressed into the recipient parent 616A through a breeding strategy of marker-assisted backcross, giving rise to eight homozygous near-isogenic lines (NILs) associated with these three loci and 19 NIL hybrids produced by the mutual crossing of these NILs. Phenotypic investigations showed that NILs displayed significant variations in both FT and plant yield (PY). Notably, genetic analysis indicated that BnFLC.A2, BnFLC.C2, and BnFLC.A3b have additive effects of 1.446, 1.365, and 1.361 g on PY, respectively, while their dominant effects reached 3.504, 2.991, and 3.284 g, respectively, indicating that the yield loss caused by early flowering can be successfully compensated by exploring the heterosis of FT genes in the hybrid NILs. Moreover, we further validated that the heterosis of FT genes in PY was also effective in non-NIL hybrids. The results demonstrate that the exploration of the potential heterosis underlying the FT genes can coordinate early flowering (maturation) and high yield in rapeseed (B. napus L.), providing an effective strategy for early flowering breeding in crops. |
format | Online Article Text |
id | pubmed-8893081 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88930812022-03-04 Heterosis Derived From Nonadditive Effects of the BnFLC Homologs Coordinates Early Flowering and High Yield in Rapeseed (Brassica napus L.) Fang, Caochuang Wang, Zhaoyang Wang, Pengfei Song, Yixian Ahmad, Ali Dong, Faming Hong, Dengfeng Yang, Guangsheng Front Plant Sci Plant Science Early flowering facilitates crops to adapt multiple cropping systems or growing regions with a short frost-free season; however, it usually brings an obvious yield loss. In this study, we identified that the three genes, namely, BnFLC.A2, BnFLC.C2, and BnFLC.A3b, are the major determinants for the flowering time (FT) variation of two elite rapeseed (Brassica napus L.) accessions, i.e., 616A and R11. The early-flowering alleles (i.e., Bnflc.a2 and Bnflc.c2) and late-flowering allele (i.e., BnFLC.A3b) from R11 were introgressed into the recipient parent 616A through a breeding strategy of marker-assisted backcross, giving rise to eight homozygous near-isogenic lines (NILs) associated with these three loci and 19 NIL hybrids produced by the mutual crossing of these NILs. Phenotypic investigations showed that NILs displayed significant variations in both FT and plant yield (PY). Notably, genetic analysis indicated that BnFLC.A2, BnFLC.C2, and BnFLC.A3b have additive effects of 1.446, 1.365, and 1.361 g on PY, respectively, while their dominant effects reached 3.504, 2.991, and 3.284 g, respectively, indicating that the yield loss caused by early flowering can be successfully compensated by exploring the heterosis of FT genes in the hybrid NILs. Moreover, we further validated that the heterosis of FT genes in PY was also effective in non-NIL hybrids. The results demonstrate that the exploration of the potential heterosis underlying the FT genes can coordinate early flowering (maturation) and high yield in rapeseed (B. napus L.), providing an effective strategy for early flowering breeding in crops. Frontiers Media S.A. 2022-02-15 /pmc/articles/PMC8893081/ /pubmed/35251061 http://dx.doi.org/10.3389/fpls.2021.798371 Text en Copyright © 2022 Fang, Wang, Wang, Song, Ahmad, Dong, Hong and Yang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Fang, Caochuang Wang, Zhaoyang Wang, Pengfei Song, Yixian Ahmad, Ali Dong, Faming Hong, Dengfeng Yang, Guangsheng Heterosis Derived From Nonadditive Effects of the BnFLC Homologs Coordinates Early Flowering and High Yield in Rapeseed (Brassica napus L.) |
title | Heterosis Derived From Nonadditive Effects of the BnFLC Homologs Coordinates Early Flowering and High Yield in Rapeseed (Brassica napus L.) |
title_full | Heterosis Derived From Nonadditive Effects of the BnFLC Homologs Coordinates Early Flowering and High Yield in Rapeseed (Brassica napus L.) |
title_fullStr | Heterosis Derived From Nonadditive Effects of the BnFLC Homologs Coordinates Early Flowering and High Yield in Rapeseed (Brassica napus L.) |
title_full_unstemmed | Heterosis Derived From Nonadditive Effects of the BnFLC Homologs Coordinates Early Flowering and High Yield in Rapeseed (Brassica napus L.) |
title_short | Heterosis Derived From Nonadditive Effects of the BnFLC Homologs Coordinates Early Flowering and High Yield in Rapeseed (Brassica napus L.) |
title_sort | heterosis derived from nonadditive effects of the bnflc homologs coordinates early flowering and high yield in rapeseed (brassica napus l.) |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8893081/ https://www.ncbi.nlm.nih.gov/pubmed/35251061 http://dx.doi.org/10.3389/fpls.2021.798371 |
work_keys_str_mv | AT fangcaochuang heterosisderivedfromnonadditiveeffectsofthebnflchomologscoordinatesearlyfloweringandhighyieldinrapeseedbrassicanapusl AT wangzhaoyang heterosisderivedfromnonadditiveeffectsofthebnflchomologscoordinatesearlyfloweringandhighyieldinrapeseedbrassicanapusl AT wangpengfei heterosisderivedfromnonadditiveeffectsofthebnflchomologscoordinatesearlyfloweringandhighyieldinrapeseedbrassicanapusl AT songyixian heterosisderivedfromnonadditiveeffectsofthebnflchomologscoordinatesearlyfloweringandhighyieldinrapeseedbrassicanapusl AT ahmadali heterosisderivedfromnonadditiveeffectsofthebnflchomologscoordinatesearlyfloweringandhighyieldinrapeseedbrassicanapusl AT dongfaming heterosisderivedfromnonadditiveeffectsofthebnflchomologscoordinatesearlyfloweringandhighyieldinrapeseedbrassicanapusl AT hongdengfeng heterosisderivedfromnonadditiveeffectsofthebnflchomologscoordinatesearlyfloweringandhighyieldinrapeseedbrassicanapusl AT yangguangsheng heterosisderivedfromnonadditiveeffectsofthebnflchomologscoordinatesearlyfloweringandhighyieldinrapeseedbrassicanapusl |