Cargando…
3-Dimensional convolutional neural networks for predicting StarCraft Ⅱ results and extracting key game situations
In real-time strategy games, players collect resources, control various units, and create strategies to win. The creation of winning strategies requires accurately analyzing previous games; therefore, it is important to be able to identify the key situations that determined the outcomes of those gam...
Autores principales: | Baek, Insung, Kim, Seoung Bum |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8893650/ https://www.ncbi.nlm.nih.gov/pubmed/35239703 http://dx.doi.org/10.1371/journal.pone.0264550 |
Ejemplares similares
-
SC2EGSet: StarCraft II Esport Replay and Game-state Dataset
por: Białecki, Andrzej, et al.
Publicado: (2023) -
Learning Macromanagement in Starcraft by Deep Reinforcement Learning
por: Huang, Wenzhen, et al.
Publicado: (2021) -
Verification of Deep Convolutional Neural Networks Using ImageStars
por: Tran, Hoang-Dung, et al.
Publicado: (2020) -
An sEMG-Based Human-Exoskeleton Interface Fusing Convolutional Neural Networks With Hand-Crafted Features
por: Yang, Xiao, et al.
Publicado: (2022) -
Star Integrals, Convolutions and Simplices
por: Nandan, Dhritiman, et al.
Publicado: (2013)