Cargando…
Hierarchical lifelong topic modeling using rules extracted from network communities
Topic models extract latent concepts from texts in the form of topics. Lifelong topic models extend topic models by learning topics continuously based on accumulated knowledge from the past which is updated continuously as new information becomes available. Hierarchical topic modeling extends topic...
Autores principales: | Khan, Muhammad Taimoor, Azam, Nouman, Khalid, Shehzad, Aziz, Furqan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8893656/ https://www.ncbi.nlm.nih.gov/pubmed/35239700 http://dx.doi.org/10.1371/journal.pone.0264481 |
Ejemplares similares
-
Online Knowledge-Based Model for Big Data Topic Extraction
por: Khan, Muhammad Taimoor, et al.
Publicado: (2016) -
Ten Simple Rules for Lifelong Learning, According to Hamming
por: Erren, Thomas C., et al.
Publicado: (2015) -
COMMUNITY NETWORKS ADDRESSING AGING WITH LIFELONG DISABILITIES
por: Ansello, Edward F
Publicado: (2019) -
Lifelong Learners’ Contributions to the Campus Community
por: White, Barbara
Publicado: (2020) -
COMMUNITY PARTNERSHIPS: A MODEL FOR LIFELONG DISABILITIES AND DEMENTIA CARE
por: Helm, Faith, et al.
Publicado: (2019)