Cargando…
A hybrid Neural Network-SEIR model for forecasting intensive care occupancy in Switzerland during COVID-19 epidemics
Anticipating intensive care unit (ICU) occupancy is critical in supporting decision makers to impose (or relax) measures that mitigate COVID-19 transmission. Mechanistic approaches such as Susceptible-Infected-Recovered (SIR) models have traditionally been used to achieve this objective. However, fo...
Autores principales: | Delli Compagni, Riccardo, Cheng, Zhao, Russo, Stefania, Van Boeckel, Thomas P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8893679/ https://www.ncbi.nlm.nih.gov/pubmed/35239662 http://dx.doi.org/10.1371/journal.pone.0263789 |
Ejemplares similares
-
Forecast analysis of the epidemics trend of COVID-19 in the USA by a generalized fractional-order SEIR model
por: Xu, Conghui, et al.
Publicado: (2020) -
Analytical solution of l-i SEIR model–Comparison of l-i SEIR model with conventional SEIR model in simulation of epidemic curves
por: Liu, Xiaoping
Publicado: (2023) -
Recursive neural networks in hospital bed occupancy forecasting
por: Kutafina, Ekaterina, et al.
Publicado: (2019) -
The coupled dynamics of information dissemination and SEIR-based epidemic spreading in multiplex networks
por: Ma, Weicai, et al.
Publicado: (2022) -
On the dynamics of SEIRS epidemic model with transport-related infection
por: Denphedtnong, Adisak, et al.
Publicado: (2013)